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PRELIMINARY EXERCISE 

  Evaluation of a Recurrence Relation (for a Mystery Function) 

 1 (2 )k k kx x b x    

Based upon the relation above, with 7b   and 0 0.2x  , complete the table below: 

b  k  kx  1kx   ( )x g b  

7.00000 0 0.20000 0.14286

 1 

 2 

 3 

Express the results entered (in columns 3 and 4) to 5 decimal places of precision. 
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A SET-THEORETIC APPROACH TO RELATIONS AND FUNCTIONS 

Definition – (A Cartesian Product) 

Let A and B  be sets.  The set of all ordered pairs, with the first element in A and the 
last element in B , is called the Cartesian product of A with B , which is denoted by 
A B .  Expressed in set-builder notation, 

 ( , ) : ,{ }A B x y x A y B     

Definition – (A Relation) 

Let A and B  be sets.  A relation from A to B  is a subset of A B .  Let R  denote this 
relation, whereby R A B  .  Suppose that ( , )x y R .  Then this association between 
x  and y  may be conveniently expressed as x R y . 

Definition – (The Domain and Range of a Relation) 

The domain and range of a relation R A B  , respectively denoted by Dom( )R  and 
Rng( )R , are the sets defined by 
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 Dom( ) : with , Rng( ) : with{ } { }R x A y B x R y R y B x A x R y         

Definition – (A Function) 

A function from A to B  is a relation from A to B  which has the essential properties 
identified below.  Let f  denote this relation, and suppose that ( , )a b f .  Then this 
association between a  and b  is customarily expressed as ( )f a b .  Properties of f : 

 1.  Dom( )f A  2.  ( , ) and ( , )a b f a c f c b     

Also, the aggregate of f  along with its domain A and co-domain B  is often denoted 
by :f A B , and ( , )a b  is routinely called an input-output pair (associated by f ). 

Definition – (A 1-to-1 Function) 

A function :f A B  is said to be one-to-one (or, equivalently, 1-to-1) if, and only if, 

 ( , ) and ( , )a b f d b f d a     

Alternatively expressed, ( ) ( )f d f a d a   . 
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Definition – (An Onto Function) 

A function :f A B  is said to be onto if, and only if, Rng( )f B . 

Definition – (A 1-to-1 Correspondence) 

A function :f A B  is said to be a one-to-one correspondence if, and only if, 

 1.  f  is 1-to-1 2.  f  is onto 

Theorem – (An Inverse Function) 

Suppose that :f A B  is a 1-to-1 correspondence.  Then y B  , x A   (which is 
unique) such that ( )f x y .  This property induces a function :g B A  for which 

 ( ) ( )g y x f x y    

g  is called the inverse function for f , and it is a 1-to-1 correspondence as well. 

Remark:  g  may be denoted by 1f  ; alternatively, f  may be denoted by 1g .  Thus, 
g  or f  may be regarded as the inverse of (or the original for) f  or g , respectively. 
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INTERPRETATIONS AND PROPERTIES OF 1-TO-1 CORRESPONDENCES 

  A ‘Mapping’ Diagram for an Invertible Function (Figure 1) 

  Emphasis:  Association of each input with a unique output. 

  A ‘Process’ Diagram for an Invertible Function (Figure 2) 

  Emphasis:  Conversion of each input into a unique output. 

  Remark:  ( )y f x  and ( )x g y  yield the same graphs. 

  Remark:  ( )y f x  and ( )y g x  yield different graphs. 

  An Expanded Diagram based upon f  as the ‘Original’ Function (Figure 3) 

  Cancellation Property 1:  ( ( ))g f x x  

  An Expanded Diagram based upon g  as the ‘Original’ Function (Figure 4) 

  Cancellation Property 2:  ( ( ))f g y y  
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INPUT-OUTPUT TABLES FOR ORIGINAL/INVERSE FUNCTIONS 

  Example:  2( )f x x  and ( )g y y  with 0{ }A    and 0{ }B    

Table 1.  Output (Input)f  

Input 1 2 3 4 5  

Output 1 4 9  16 25 

Table 2.  Output (Input)g  

Input 1 4 9  16 25 

Output 1 2 3 4 5  

  Issue – Arbitrary Inputs – for instance:  (3) 1 (3) 2g g   ?   (3) 1.732[ ]g   
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INPUT-OUTPUT TABLES FOR ORIGINAL/INVERSE FUNCTIONS 

  Example:  ( ) 2xf x   and 2( ) log ( )g y y  with A    and B    

Table 3.  Output (Input)f  

Input 2  1  0 1 2 

Output 1
4  1

2  1 2 4 

Table 4.  Output (Input)g  

Input 1
4  1

2  1 2 4 

Output 2  1  0 1 2 

  Issue – Arbitrary Inputs – for instance:  (3) 1 (3) 2g g   ?   (3) 1.585[ ]g   
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ANALYTICAL DETERMINATION OF INVERSE FUNCTIONS 

  Example:  Inverse Hyperbolic Cosine Function 

 1
2( ) cosh ( ) ; 0( )x xf x x e e x     

 

1
2

2

2 0

2 1 0
( )

( )
( ) ( )

x x x x

x x

y e e e e y

e y e
x g y

      

   
 

 

 1 2( ) cosh ( ) ln 1 ; 1g y y y y y       
  

  Example:  Inverse Hyperbolic Sine Function 

 1
2( ) sinh ( ) ;( )x xf x x e e x      

 1 2( ) sinh ( ) ln 1 ;g y y y y y        
  
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STANDARD NEWTON-RAPHSON METHOD 

  Introduction to the Method 

The Newton-Raphson method is a numerical algorithm utilized to obtain an accurate 
but approximate solution or ‘root’ to an equation of the specific form 

 ( ) 0F x   (1) 

where ( )F x  represents any expression that involves a single variable, presumed to 
be denoted by x  in this instance.  In advanced courses on numerical analysis, it can 
be shown that this method (a) has desirable convergence properties, and (b) yields a 
desired root to Eq. (1) of suitable precision if such a solution exists.  The algorithm 
inherently employs an iterative process. 

Typically, the solve utility or equivalent feature available on scientific calculators 
is based upon a practical implementation of the Newton-Raphson method, which is 
commonly known as the Secant method. 
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An important caveat of both these methods is that a ‘sufficiently-close’ initial guess 
for the solution of interest must be provided in order for the iterative process to be 
successful.  However, techniques to obtain an appropriate initial guess are available. 

  Derivation of the Algorithm 

Essential Concept:  Locally approximate the function ( )F x  with a linear function in 
order to forecast a desired root p  for which ( ) 0F p  .  Accordingly, consider 

 a e( ) , ( )y b x x c y F x     (2) 

where x  is assumed to be ‘close to’ p .  This linear function should serve to fulfill its 
intended purpose if the conditions stipulated below are satisfied: 

 
a e

a e

@

@

y y x x
dy dy x x
dx dx

 

 
 (3) 

After application of these conditions, it is determined that 
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 ( ) , ( )b F x c F x   (4) 

As a result, the relation for ay  in Eqs. (2) becomes 

 a ( ) ( ) ( )y F x x x F x    (5) 

Next, suppose that p  is a root to Eq. (1), and that x  is ‘nearby’ p , so x  is regarded 
as an estimate for p .  Then e 0y   since ( ) 0F p  .  But ay  is presumed to acceptably 
approximate ey .  As a result, let kx x  and 1kx x   for which a 0y  , so that Eq. (5) 
yields the relation 

 10 ( )( ) ( )k k k kF x x x F x    (6) 

It is desirable and effective to convert this relation into a mechanism to generate an 
increasingly accurate sequence of values that estimate the root p : 

 1
( )
( )

k
k k

k

F xx x
F x  


 (7) 
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where kx  is a previous estimate for p  while 1kx   is an updated estimate for p .  This 
relation is recursively applied to refine and improve each estimate for p , and it can 
be proven that the sequence of estimates { }kx  ‘rapidly’ converges to the desired p  
under modest conditions on the function ( )F x  and the initial guess 0x .  In practice, 
the iterative process (and the sequence itself) is terminated when a specified degree 
of precision in the accuracy of the most recent estimate for p  is achieved. 

See Figure 5 for an insightful depiction of the iterative process and its effectiveness. 

EVALUATION OF INVERSE FUNCTIONS (VIA ORIGINAL FUNCTIONS) 

In applied sciences, it is often convenient to express certain formulas via an inverse 
function g  that is based upon an original function f .  It then becomes necessary to 
evaluate g  at a particular input b .  Let x  denote the output of g  in this instance: 

 ( )x g b  (8) 

From the unique-output property of functions along with the cancellation properties 
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of invertible functions, Eq. (8) can be recast in terms of the original function f  as 

 ( ) ( ( )) ( )f x f g b f x b    (9) 

In order to utilize the method of Eq. (7), Eq. (9) must be realigned with Eq. (1): 

 ( ) 0 ; ( ) ( )F x F x f x b    (10) 

  Example – Evaluate b  for (a) 1
3b  , and (b) 7b  . 

 
2

2 ( )
( ) 2

F x x bx b x b
F x x

 
   

 
 

Based upon Eq. (7), the algorithm for the evaluation of b  becomes 

 1
1 2 ( )k k kx x b x    

  Graphical Estimates and Spreadsheet Results 
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1
0 33

0 2

0.5 0.57735

7 2.5 2.64575

b x b x

b x b x

     

     





 

  Example – Evaluate ln ( )b  for (a) 1
3b  , and (b) 7b  . 

 
( )

ln ( )
( )

x
x

x

F x e b
x b e b

F x e

 
   

 
 

Based upon Eq. (7), the algorithm for the evaluation of ln ( )b  becomes 

 1 1 kx
k kx x be     

  Graphical Estimates and Spreadsheet Results 

 

1
0 33

0 2

1.0 ln ( ) 1.09861

7 2.0 ln ( ) 1.94591

b x b x

b x b x

       

     




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  Example – Evaluate 1sin ( )b  for (a) 4
5b  , and (b) 6

5b  . 

 1 ( ) sin ( )
sin ( ) sin ( )

( ) cos( )
F x x b

x b x b
F x x

  
   

 
 

Based upon Eq. (7), the algorithm for the evaluation of 1sin ( )b  becomes 

 1 tan ( ) sec( )k k k kx x x b x     

  Graphical Estimates and Spreadsheet Results 

 

14
0 35

16
05

1.0 sin ( ) 0.92730

1.0 sin ( ) is undefined

b x b x

b x b









     

   

 

EXTENDED NEWTON-RAPHSON METHOD 

  Explanation of the Method 
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This method is developed in almost the same manner as in the case of the standard 
method, except that the relations indicated below are utilized in an effort to forecast 
a desired root p  for which ( ) 0F p  : 

 2
a e( ) ( ) , ( )y a x x b x x c y F x       (11) 

where x  is assumed to be ‘close to’ p .  It is anticipated that the quadratic function 
will fulfill its intended purpose even better than the linear function employed for the 
standard method if the conditions stipulated below are satisfied: 

 

a e

a e

2 2
a e

2 2

@

@

@

y y x x
dy dy x x
dx dx

d y d y x x
dx dx

 

 

 

 (12) 

After application of these conditions, it is determined that 



J. C. HAYEN ORMATYC 2017 TEXT PAGE A-18 

 1
2 ( ) , ( ) , ( )a F x b F x c F x     (13) 

  Presentation of the Algorithm 

By proceeding with the same approach as in the case of the standard method, again 
with kx x  and 1kx x   for which a 0y  , the relation for ay  in Eqs. (11) yields 

 
2

1
4

2k k
b b ac

x x
a

  
   (14) 

where a , b , and c  are evaluated as indicated in Eqs. (13), except that x  is replaced 
by kx .  At this stage, for reasons to be discussed, it is advantageous to rationalize the 
numerator of Eq. (14), which then becomes 

 1 2

2

4
k k

cx x
b b ac




 
 

 (15) 

It is now apparent that an ambiguity exists for the selection of the proper sign so as 
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to develop a useful recurrence relation for the algorithm of interest.  This ambiguity 
can be resolved by first performing a simplification: 

 1 2

2

1 4 /
k k

cx x
b b ac b




 
 

 (16) 

Next, by carefully examining representative cases (see diagrams in Figure 6), it can 
be concluded that the proper sign to select is sgn ( )b .  As a result, 

 1 2

2

sgn ( ) 1 4 /
k k

cx x
b b b ac b




 
 

 (17) 

or, since sgn ( )b b b  for any real number b , 

 1 2

2

1 1 4

/
/

k k
c bx x

ac b
  

 
 (18) 

Last, substituting the actual expressions for a , b , and c  into Eq. (18) reveals 
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 1
( )( )
( )

k
k k k

k

F xx x x
F x

  


 (19) 

for which ( )kx  acts as a modulating factor that accelerates convergence, where 

 2
2 ( ) ( )2( ) , ( )

( )1 1 ( ) [ ]
k k

k k
kk

F x F xx x
F xx

 



 

 
 (20) 

These particular functions possess some important properties: 

 1. ( ) 0kx    and  ( ) 1kx    as  ( ) 0kF x   

 2. ( ) 0kx    and  ( ) 1kx    if  ( ) 0kF x   

EVALUATION OF INVERSE FUNCTIONS (VIA ORIGINAL FUNCTIONS) 

The previous examples are now reconsidered via the extended method. 

(See Progression of Calculations in Spreadsheet Results) 
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IMPROVED NEWTON-RAPHSON METHOD 

  Outline of the Method 

  This method is still based upon the extended method presented above. 

  This method utilizes a different technique to estimate the initial guess. 

The initial guess is ‘bracketed’ via supplying reasonable upper and lower bounds on 
the value of x  for which ( )f x b .  This procedure is demonstrated in a spreadsheet 
to be presented.  An important element of this improved method is the formation of 
a ‘locally’ interpolating quadratic polynomial for ( )f x : 

 2
a e, ( )y a x b x c y f x     (21) 

where ay  is assumed to ‘closely follow’ ey  between these bounds on x .  But the most 
important characteristic of this quadratic polynomial is that, for a particular ay , it 
can be solved for the required x .  Thus, in the case of ay b , the initial guess 0x  will 
be selected as this solution for x . 
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  Procedure for the Method 

Two bounds on x  must be supplied: LBx  and UBx , with LB UBx x , such that 

 
LB UB

LB UB

( ) ( ) if is strictly increasing
or

( ) ( ) if is strictly decreasing

f x b f x f

f x b f x f

 

 
 (22) 

Such bounds exist because the function f  must be strictly monotonic in the vicinity 
of the value of x  for which ( )f x b , a necessary condition for invertible functions. 

Based upon these bounds, let 

 
1 LB 1 1

1
2 MP LB UB 2 22

3 UB 3 3

( )
( ) , ( )

( )

x x y f x
x x x x y f x
x x y f x

 
   
 

 (23) 

The interpolating quadratic polynomial is then determined by the conditions 
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2
1 1 1
2
2 2 2
2
3 3 3

a x b x c y

a x b x c y

a x b x c y

  

  

  

 (24) 

By means of the rule of Cramer, this system of linear equations can be solved for the 
variables ( , , )a b c : 

 

1 3 2 2 1 3 3 2 1

1 2 2 3 3 1
2 2 2 2 2 2

1 2 3 2 3 1 3 1 2

1 2 2 3 3 1

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

1 2 2 3 3 1

( ) ( ) ( )
( )( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

y x x y x x y x xa
x x x x x x

y x x y x x y x xb
x x x x x x

y x x x x y x x x x y x x x xc
x x x x x x

    


  

    


  

    


  

 (25) 

Finally, the initial guess 0x  is determined from the proper solution to the equation 

 2a x b x c b    (26) 



J. C. HAYEN ORMATYC 2017 TEXT PAGE A-24 

whose well-known candidate solutions are 

 
2

,
4 ( )

2
b b a c b

x
a 

   
  (27) 

The sign ambiguity apparent above is resolved as indicated below: 

 
0 LB UB

0 LB UB

if
or
if

x x x x x

x x x x x

 

 

  

  
 (28) 

With 0x  determined, the extended method is then applied exactly as before, by means 
of Eq. (19), to complete the implementation of the improved method. 

EVALUATION OF INVERSE FUNCTIONS (VIA ORIGINAL FUNCTIONS) 

The previous examples are now reconsidered via the improved method. 

(See Progression of Calculations in Spreadsheet Results) 
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Reciprocal Function – Standard Method

b k x k x k +1 x  = g (b )
7.00000 0 0.20000 0.12000 0.14286

1 0.12000 0.13920
2 0.13920 0.14276
3 0.14276 0.14286
4 0.14286 0.14286
5 0.14286 0.14286
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Square-Root Function – Standard Method

b k x k x k +1 x  = g (b )
0.33333 0 0.50000 0.58333 0.57735

1 0.58333 0.57738
2 0.57738 0.57735
3 0.57735 0.57735
4 0.57735 0.57735
5 0.57735 0.57735

Natural Logarithm Function – Standard Method

b k x k x k +1 x  = g (b )
0.33333 0 -1.00000 -1.09391 -1.09861

1 -1.09391 -1.09860
2 -1.09860 -1.09861
3 -1.09861 -1.09861
4 -1.09861 -1.09861
5 -1.09861 -1.09861

Inverse-Sine Function – Standard Method

b k x k x k +1 x  = g (b )
0.80000 0 1.00000 0.92324 0.92730

1 0.92324 0.92728
2 0.92728 0.92730
3 0.92730 0.92730
4 0.92730 0.92730
5 0.92730 0.92730
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Square-Root Function – Extended Method

b k x k F (x k ) F' (x k ) F" (x k ) x k +1 x  = g (b )
0.33333 0 0.50000 -0.08333 1.00000 2.00000 0.57735 0.57735

1 0.57735 0.00000 1.15470 2.00000 0.57735
2 0.57735 0.00000 1.15470 2.00000 0.57735
3 0.57735 0.00000 1.15470 2.00000 0.57735
4 0.57735 0.00000 1.15470 2.00000 0.57735
5 0.57735 0.00000 1.15470 2.00000 0.57735

Natural Logarithm Function – Extended Method

b k x k F (x k ) F' (x k ) F" (x k ) x k +1 x  = g (b )
0.33333 0 -1.00000 0.03455 0.36788 0.36788 -1.09879 -1.09861

1 -1.09879 -0.00006 0.33328 0.33328 -1.09861
2 -1.09861 0.00000 0.33333 0.33333 -1.09861
3 -1.09861 0.00000 0.33333 0.33333 -1.09861
4 -1.09861 0.00000 0.33333 0.33333 -1.09861
5 -1.09861 0.00000 0.33333 0.33333 -1.09861

Inverse-Sine Function – Extended Method

b k x k F (x k ) F' (x k ) F" (x k ) x k +1 x  = g (b )
0.80000 0 1.00000 0.04147 0.54030 -0.84147 0.92735 0.92730

1 0.92735 0.00004 0.59995 -0.80004 0.92730
2 0.92730 0.00000 0.60000 -0.80000 0.92730
3 0.92730 0.00000 0.60000 -0.80000 0.92730
4 0.92730 0.00000 0.60000 -0.80000 0.92730
5 0.92730 0.00000 0.60000 -0.80000 0.92730
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Natural Logarithm Function – Improved Method

b k x k F (x k ) F' (x k ) F" (x k ) x k +1 x  = g (b )
0.33333 0 -1.08310 0.00521 0.33855 0.33855 -1.09861 -1.09861

1 -1.09861 0.00000 0.33333 0.33333 -1.09861

x LB x MP x UB

-2.00000 -1.00000 0.00000
f (x LB) f (x MP) f (x UB)

0.13534 0.36788 1.00000

Inverse-Sine Function – Improved Method

b k x k F (x k ) F' (x k ) F" (x k ) x k +1 x  = g (b )
0.80000 0 0.94695 0.01164 0.58416 -0.81164 0.92730 0.92730

1 0.92730 0.00000 0.60000 -0.80000 0.92730

x LB x MP x UB

0.00000 0.75000 1.50000
f (x LB) f (x MP) f (x UB)

0.00000 0.68164 0.99749

Inverse-Tangent Function – Improved Method

b k x k F (x k ) F' (x k ) F" (x k ) x k +1 x  = g (b )
1.20000 0 0.87603 -0.00007 2.43983 5.85524 0.87606 0.87606

1 0.87606 0.00000 2.44000 5.85600 0.87606

x LB x MP x UB

0.75000 0.87500 1.00000
f (x LB) f (x MP) f (x UB)

0.93160 1.19742 1.55741



ENGINEERING 

Dynamics II (MECH 312) 
Explicit Time Solutions – An Example Problem 

Vertical Projectile Motion with a Drag Force 

Vertical Projectile Motion Formulas 

The formulas given below exactly describe the motion of a projectile which may be modeled as a 
particle, has been vertically projected in a uniform gravitational field, and is subjected to a drag 
force that is proportional to the projectile speed squared:  2

dF k v  

Note:  In the formulas below, k , ov , m , and og  should be regarded as known parameters. 

  Ascent Relations:  a0 t t   

2
o o o aln 1 ( ) cos ( )/ /[ ]{ }my k v m g k g m t t

k
    

o o atan ( )/ /[ ]v m g k k g m t t   

1 2
a o o o( ) tan ( )/ /[ ]t m k g k v m g , 2

o oln 1 ( )/[ ]mh k v m g
k

   

  Descent Relations:  a it t t   

2
o o o aln 1 ( ) sech ( )/ /[ ]{ }my k v m g k g m t t

k
    

o o atanh ( )/ /[ ]v m g k k g m t t   

1 2
d o o o( ) sinh ( )/ /[ ]t m k g k v m g , o

i 2
o o1 ( )/
vv

k v m g



 

  Mathematical Definitions 

1 2

2sech ( )

tanh ( )

sinh ( ) ln 1[ ]

u u

u u

u u

u
e e
e eu
e e

u u u
















  

 

Note:  All of the relations above can be simplified via a parameter  , which is defined below. 
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  Notation/Terminology 

 t  :  elapsed time (from the projection instant) 

 y  :  projectile position (vertical displacement) 

 v  :  projectile speed 

 k  :  drag coefficient 

 ov  :  projection speed (initial speed) 

 m  :  particle mass 

 og  :  gravity constant 

   :  medium resistance intensity, defined by 2
o o( )/k v m g   

 at  :  ascent time 

 h  :  maximum height 

 dt  :  descent time 

 iv  :  impact speed 

 it  :  impact instant, defined by i a dt t t   

Note:  at  and dt  denote the durations of the ascent and descent phases, respectively, whereas it  
denotes the terminal value of t  or (equivalently) the duration of the entire projectile motion. 






