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PRELIMINARY EXERCISE

e Evaluation of a Recurrence Relation (for a Mystery Function)

ORMATYC 2017

Xk+1 = Xk(2—ka)

TEXT PAGE A-2

Based upon therelation above, with b=7 and x, =0.2, complete the table below:

b

X

Xk+1

x=g(b)

7.00000

0.20000

0.14286

Expresstheresultsentered (in columns 3 and 4) to 5 decimal places of precision.
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A SET-THEORETIC APPROACH TO RELATIONSAND FUNCTIONS

Definition — (A Cartesian Product)

Let Aand B besets. Theset of all ordered pairs, with thefirst element in A and the
last element in B, is called the Cartesian product of A with B, which is denoted by
Ax B. Expressed in set-builder notation,

AxB={(x,y):xe A yeB}

Definition — (A Relation)

Let A and B besets. A relation from Ato B isasubset of AxB. Let R denotethis
relation, whereby Rc AxB. Supposethat (X, y) € R. Then thisassociation between
x and y may be conveniently expressed as xRY.

Definition — (The Domain and Range of a Relation)

The domain and range of arelation Rc Ax B, respectively denoted by Dom(R) and
Rng(R), arethe sets defined by
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Dom(R)={xe A:3ye BwithxRy} , Rng(R)={yeB:3xe Awith xRy}

Definition — (A Function)

A function from Ato B isareation from A to B which hasthe essential properties
identified below. Let f denote thisrelation, and supposethat (a,b) e f. Then this
association between a and b iscustomarily expressed as f(a)=b. Propertiesof f:

1. Dom(f)=A 2. (a,b)efand(a,c)ef = c=Db

Also, the aggregate of f along with itsdomain A and co-domain B is often denoted
by f: A— B, and (a, b) isroutinely called an input-output pair (associated by f).

Definition — (A 1-to-1 Function)

A function f : A— B issaid to be one-to-one (or, equivalently, 1-to-1) if, and only if,
(a,b)e fand(d,b)e f = d=a

Alternatively expressed, f(d)=f(a) = d=a.
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Definition — (An Onto Function)

A function f: A— B issaid to beontoif, and only if, Rng(f)=B.

Definition — (A 1-to-1 Correspondence)

A function f : A— B issaid to be a one-to-one correspondence if, and only if,

1. f isl-to-1 2. f isonto

Theorem — (An Inverse Function)

Supposethat f:A— B isa 1-to-1 correspondence. Then Vye B, dxe A (which is
unique) such that f(x)=y. Thisproperty inducesafunction g:B — A for which

gy)=x < f(x)=y
g iscalled theinversefunction for f,and itisa 1-to-1 correspondence aswell.

Remark: g may bedenoted by f*; alternatively, f may bedenoted by g™*. Thus,
g or f may beregarded astheinverseof (or theoriginal for) f or g, respectively.
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INTERPRETATIONS AND PROPERTIES OF 1-TO-1 CORRESPONDENCES

e A ‘Mapping Diagram for an Invertible Function (Figure 1)
e Emphasis. Association of each input with a unique output.
e A ‘Process Diagram for an Invertible Function (Figure 2)

e Emphasis. Conversion of each input into a unique output.
e Remark: y= f(x) and x=g(y) yield the same graphs.
e Remark: y= f(x) and y=g(x) yield different graphs.

e An Expanded Diagram based upon f asthe‘Original’ Function (Figure 3)
e Cancdlation Property 1: g(f(x))=x
e An Expanded Diagram based upon g asthe‘Original’ Function (Figure 4)

e Cancellation Property 2: f(g(y))=Yy
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|NPUT-OUTPUT TABLESFOR ORIGINAL/INVERSE FUNCTIONS
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e Example: f(x)=x%and g(y)=./y with A=R* {0} and B=R" {0}

Table 1. Output = f (Input)
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| nput 4 5
Output 16 25
Table 2. Output = g(Input)
| nput 16 25
Output 4 5

e Issue—Arbitrary Inputs—for instance: g(3)=? = 1<g(3)<2 [g(3)~1.732]
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|NPUT-OUTPUT TABLESFOR ORIGINAL/INVERSE FUNCTIONS

e Example: f(x)=2" and g(y)=1log,(y) with A=R and B=R"

Table 3. Output = f (Input)

| nput -2 -1 0 1 2

Output

N
=
N
D

1
4

Table4. Output = g(Input)

| nput

1
4

Output

-2

e Issue—Arbitrary Inputs—for instance:

9(3)=? = 1< g(d <2 [g(3) ~1.585]
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ANALYTICAL DETERMINATION OF INVERSE FUNCTIONS

e Example: Inverse Hyperbolic Cosine Function

f(x)=cosh(x)=3(e*+€) ; x=0

y=1(e"+e¥) = e +e*-2y=0
= (e))°-2y(e")+1=0
= x=9(y)

9(y) 2 cos(y) =In| y+yy?-1 ]| y=1
e Example: Inverse Hyperbolic Sine Function
f(x)=sinh(x)=1(e"-€e7) ; ‘X‘<oo

gy) 2snh(y)=In| y+yy2 1 | 5 |y[<e



J. C. HAYEN ORMATYC 2017 TeEXT PAGE A-10

STANDARD NEWTON-RAPHSON METHOD

e |Introduction tothe Method

The Newton-Raphson method isa numerical algorithm utilized to obtain an accurate
but approximate solution or ‘root’ to an equation of the specific form

F(x) =0 (1)

where F(X) represents any expression that involves a single variable, presumed to
be denoted by x in thisinstance. In advanced courses on numerical analysis, it can
be shown that this method (a) has desirable convergence properties, and (b) yields a
desired root to Eq. (1) of suitable precision if such a solution exists. The algorithm
inherently employs an iterative process.

Typically, the sol ve utility or equivalent feature available on scientific calculators
Is based upon a practical implementation of the Newton-Raphson method, which is
commonly known as the Secant method.
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An important caveat of both these methods is that a ‘sufficiently-close’ initial guess
for the solution of interest must be provided in order for the iterative process to be
successful. However, techniquesto obtain an appropriateinitial guess are available.

e Derivation of the Algorithm

Essential Concept: Locally approximate the function F(x) with alinear function in
order toforecast adesired root p for which F(p)=0. Accordingly, consider

Ya=b(X=X)+C , Y.=F(x) (2)

where X isassumed to be‘closeto’ p. Thislinear function should serve to fulfill its
intended purposeif the conditions stipulated below are satisfied:

Ya=Ye @ x=X
Ha_ Ve 5 x_x )

dx dx

After application of these conditions, it isdetermined that
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b=F'(X) , c=F(X) (4)
Asaresult, therelation for y, in Egs. (2) becomes
Ya = F'(X) (x=X) + F(X) )

Next, suppose that p isaroot to Eqg. (1), and that X is‘nearby’ p, so X isregarded
asan estimatefor p. Then y,=0 since F(p)=0. But y, ispresumed to acceptably
approximate y,. Asaresult, let X=x, and x= x,_, for which y, =0, so that Eq. (5)
yieldstherelation

0=F'(X) (X1 = %)+ F (%) (6)

It is desirable and effective to convert this relation into a mechanism to generate an
increasingly accur ate sequence of valuesthat estimatetheroot p:

F (%) 7)

Xk+1 - Xk o F,(Xk)
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where x, isa previous estimate for p while x,,, isan updated estimate for p. This
relation isrecursively applied to refine and improve each estimate for p, and it can
be proven that the sequence of estimates {x,} ‘rapidly’ converges to the desired p
under modest conditions on the function F(x) and theinitial guess x,. In practice,
the iterative process (and the sequence itself) is terminated when a specified degree
of precision in the accuracy of the most recent estimate for p isachieved.

See Figure 5 for an insightful depiction of theiterative process and its effectiveness.

EVALUATION OF INVERSE FUNCTIONS (VIA ORIGINAL FUNCTIONS)

In applied sciences, it is often convenient to express certain formulas via an inverse
function g that is based upon an original function f. It then becomes necessary to
evaluate g at a particular input b. Let x denotethe output of g inthisinstance:

x=g(b) (8)

From the unique-output property of functions along with the cancellation properties
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of invertible functions, Eg. (8) can berecast in terms of theoriginal function f as

f(x)=1(g(®) = f(x)=b (9)
In order to utilizethe method of Eq. (7), EqQ. (9) must berealigned with Eq. (1):
F(X)=0 ; F(X)=f(xX)-Db (10)

e Example—Evaluate vb for (a) b=1, and (b) b=7.

F(X)=x*-b
F'(X)=2x

X=\/B — xX°=b =

Based upon Eq. (7), thealgorithm for the evaluation of Jb becomes

Xer1 =3 (X +b/%)

e Graphical Estimates and Spreadsheet Results
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e b= = x=05 = bxx=057735

e b=7 = x,=25 = +bxx,=264575

e Example—Evaluate In(b) for (a) b=1, and (b) b=7.

F(X)=€"-b
F'(x) =€

x=Inb) = €'=b =

Based upon Eq. (7), thealgorithm for the evaluation of In(b) becomes
Xci1 =X —1+be™
e Graphical Estimates and Spreadsheet Results
e b= = x=-1.0 = In(b)=x;=-1.09861

o b=7 = x=20 = In(b)=x,=1.94591
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e Example—Evaluate sin"*(b) for (a) b= 2,and (b) b=2.

F(x)=sin(x)—b

x=8n7(b) = sn(x)=b = F'(X) = cos(x)

Based upon Eg. (7), the algorithm for the evaluation of sin"*(b) becomes

X1 = % —tan(x) +bsec(x)

e Graphical Estimates and Spreadsheet Results

e b

4 = x=10 = sin"(b)~x,=092730

e b

§ = x=10 = sin*(b)isundefined

EXTENDED NEWTON-RAPHSON METHOD

e Explanation of the Method

TEXT PAGE A-16
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This method is developed in almost the same manner as in the case of the standard
method, except that the relations indicated below are utilized in an effort to forecast
adesired root p for which F(p)=0:

y,=a(x-X)*+b(x=X)+c , y,=F(X) (11)

where X isassumed to be ‘closeto’ p. It isanticipated that the quadratic function
will fulfill itsintended purpose even better than the linear function employed for the
standard method if the conditions stipulated below ar e satisfied:

Ya=VYe @ Xx=X

dy, _ ay, -
= —— X=X 12
dx dx @ (12)
d%y, d°y, _
= X=X
dx®>  dx? @

After application of these conditions, it isdetermined that
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a=3F"(X) , b=F'(X) , c=F(X) (13)
e Presentation of the Algorithm

By proceeding with the same approach as in the case of the standard method, again
with X £ x, and x= x,,, for which y, =0, therélation for y, in Egs. (11) yields

~b+.b*-4ac (14

2a

X1~ % =

where a, b, and ¢ are evaluated asindicated in Eqgs. (13), except that X isreplaced
by x.. At thisstage, for reasonsto be discussed, it is advantageousto rationalize the
numerator of Eg. (14), which then becomes

—-2C

Xes1 — X =
' b+./b*-4ac

It is now apparent that an ambiguity exists for the selection of the proper sign so as

(15)
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to develop a useful recurrencerelation for the algorithm of interest. Thisambiguity
can beresolved by first performing a simplification:

- 2C

X = (16)
b+ |b|\/1-4ac/b’

Xer1 ™

Next, by carefully examining representative cases (see diagramsin Figure 6), it can
be concluded that the proper sign to select is sgn(b). Asaresult,

—2C
X1~ %= 5 (17)
b+sgn(b) |b|/1-4ac/b
or, since sgn(b) |b|=b for any real number b,
2¢c/b
X1 =X~ (18)

1+/1-4ac/b?

L ast, substituting the actual expressionsfor a, b, and c into Eg. (18) reveals
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oy F (%) 19

for which y(x) actsasa modulating factor that acceler ates convergence, where

2 _2F"(%) F(%) .
e ey S e (20)

These particular functions possess some important properties:
1. u(x)—0 and y(x)—>1 as F(x)—0

2. u(x)=0 and y(x)=1 if F'(x)=0

EVALUATION OF INVERSE FUNCTIONS (VIA ORIGINAL FUNCTIONS)

The previous examples are now reconsider ed via the extended method.

(See Progression of Calculationsin Spreadsheet Results)
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| MPROVED NEWTON-RAPHSON M ETHOD

e QOutline of the Method

e Thismethod is still based upon the extended method presented above.

e Thismethod utilizes a different technique to estimate the initial guess.

Theinitial guessis‘bracketed’ via supplying reasonable upper and lower bounds on
the value of x for which f(x)=b. Thisprocedureisdemonstrated in a spreadsheset
to be presented. An important element of thisimproved method is the for mation of
a ‘locally’ interpolating quadratic polynomial for f(x):

y,=ax*+bx+t , y.,=f(x) (21)

where y, isassumed to ‘closely follow’ y, between these bounds on x. But the most
Important characteristic of this quadratic polynomial is that, for a particular vy,, it
can be solved for therequired x. Thus, in the case of y, =b, theinitial guess x, will
be selected asthis solution for X.
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e Procedurefor the Method

Two boundson x must be supplied: X g and X g, With X g < X,g, such that

f(xg)<b<f(xyg) If fisstrictlyincreasing
or (22)
f(xg)=b=>f(xyg) If fisstrictlydecreasing

Such bounds exist because the function f must be strictly monotonic in the vicinity
of thevalueof x for which f(x)=Db, a necessary condition for invertible functions.

Based upon these bounds, let

X =Xg yi= (%)
X =Xup=5(X+Xus) » Yo=F(X) (23)
X3 = XuB Yz = (%)

Theinter polating quadratic polynomial isthen determined by the conditions
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ax+bx+c=y
axs+bx,+T=y, (24)

— 2 =
ax;+bx+C=y;

By means of the rule of Cramer, this system of linear equations can be solved for the
variables (2, b, T):

Y1 (%= %) + Yo (% —X3) + Y5 (% — %)
(% — %) (% —%5) (% — %)
6:Y1(X§_X§)+Y2(X§_X12)+ys()(f_xg) (25)
(% — %) (% —%5) (% — %)
Y Xo X5 (X5 = X0) + Yo X3 4 (3 = X3) + Y54 % (% — %)
(% — %) (% —X%5) (% — %)

a=

C

Finally, theinitial guess X, is determined from the proper solution to the equation

ax’+bx+t=b (26)
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whose wéll-known candidate solutionsare

. _—Bi\/52—4§(6—b)
o 23

(27)

The sign ambiguity apparent above isresolved asindicated below:

X=X If Xg<X <Xy
or (28)

X=X If X g<X <Xy

With x, determined, the extended method isthen applied exactly as before, by means
of EQ. (19), to complete the implementation of the improved method.

EVALUATION OF INVERSE FUNCTIONS (VIA ORIGINAL FUNCTIONS)

The previous examples are now reconsider ed via the improved method.

(See Progression of Calculationsin Spreadsheet Results)



A B

(Domain) (Co-Domain)

g

Figure 1 — A ‘Mapping’ Diagram for an Invertible Function

Input to f Output of
or x=g() y =A%) or
Output of g Input to g

g <€

Figure 2 — A ‘Process’ Diagram for an Invertible Function



X ——> f > fx) ——> g g(fx))
A |
' [
! [
! [
' [
D o [
= g(flx)) =x
Figure 3 — Function Notation, Composition, and Cancellation (‘Original’ Function: f)

y —> g > g(y) —> S —> flg(v)
A

= flgd) =y

Figure 4 — Function Notation, Composition, and Cancellation (‘Original’ Function: g)



Y A

Slope: F(x,)

(g> £1(x))

Figure 5 — Standard Newton-Raphson Method Procedure



Y A F(x)>0,F"(x;)>0
y=F(x)
’
X
(xk, F(xk))
y ¢ F(x)>0,F"(x)<0
y=F)

(xks F(xk))

F(x) <0, F"(x)>0

y=FXx)

=Y

Figure 6 — Some Extended Newton-Raphson Method Cases




J. C. Hayen

Reciprocal Function — Standard Method
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b k Xk Xk+1 X=d (b )
7.00000 0 0.20000 0.12000 0.14286
1 0.12000 0.13920
2 0.13920 0.14276
3 0.14276 0.14286
4 0.14286 0.14286
5 0.14286 0.14286

Graphics Page C-1
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Squar e-Root Function — Standard Method

b k Xk Xk+1 X=d (b )
0.33333 0 0.50000 0.58333 0.57735
1 0.58333 0.57738
2 0.57738 0.57735
3 0.57735 0.57735
4 0.57735 0.57735
5 0.57735 0.57735

Natural Logarithm Function — Standard M ethod

b k Xk Xk+1 X=d (b )
0.33333 0 -1.00000 -1.09391 -1.09861
1 -1.09391 -1.09860
2 -1.09860 -1.09861
3 -1.09861 -1.09861
4 -1.09861 -1.09861
5 -1.09861 -1.09861

| nver se-Sine Function — Standard M ethod

b k Xk Xk+1 X=d (b )
0.80000 0 1.00000 0.92324 0.92730
1 0.92324 0.92728
2 0.92728 0.92730
3 0.92730 0.92730
4 0.92730 0.92730
5 0.92730 0.92730

Graphics Page C-2
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Graphical Estimation

of Square-Root Function
8.00
7.00
6.00
5.00
4.00
> 3.00
2.00
1.00

0.00 ~1
-1.00
-2.00
-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00
X
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>

8.00

Graphical Estimation

of Natural Logarithm Function

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

-1.00

-2.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00
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Graphical Estimation
of Inverse-Sine Function

2.50

2.00

1.50

1.00 4=
—~
) e N
0.50 / \

> 0.00 \

-0.50 \

-1.00

-1.50

-2.00

-2.50
-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00
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Squar e-Root Function — Extended M ethod
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b k Xy F(Xk) F (Xk) F" (Xk) Xk +1 x =g(b)
0.33333 0 0.50000] _ -0.08333 1.00000 2.00000 0.57735 0.57735
1 0.57735 0.00000 1.15470 2.00000 0.57735
2 0.57735 0.00000 1.15470 2.00000 0.57735
3 0.57735 0.00000 1.15470 2.00000 0.57735
4 0.57735 0.00000 1.15470 2.00000 0.57735
5 0.57735 0.00000 1.15470 2.00000 0.57735

Natural Logarithm Function — Extended M ethod
b k Xy F(Xk) F (Xk) F" (Xk) Xk +1 x =g(b)
0.33333 0 ~1.00000 0.03455 0.36788 0.36788]  -1.09879]  -1.09861
1 -1.09879]  -0.00006 0.33328 0.33328]  -1.09861
2 ~1.09861 0.00000 0.33333 0.33333]  -1.09861
3 -1.09861 0.00000 0.33333 0.33333]  -1.09861
4 ~1.09861 0.00000 0.33333 0.33333]  -1.09861
5 -1.09861 0.00000 0.33333 0.33333]  -1.09861
I nver se-Sine Function — Extended M ethod
b k Xy F(Xk) F (Xk) F" (Xk) Xk +1 x =g(b)
0.80000 0 1.00000 0.04147 0.54030| _ -0.84147 0.92735 0.92730
1 0.92735 0.00004 0.50995|  -0.80004 0.92730
2 0.92730 0.00000 0.60000]  -0.80000 0.92730
3 0.92730 0.00000 0.60000] _ -0.80000 0.92730
4 0.92730 0.00000 0.60000]  -0.80000 0.92730
5 0.92730 0.00000 0.60000]  -0.80000 0.92730
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Natural Logarithm Function —Improved Method

ORMATYC 2017

Graphics Page C-7

b K Xk F(xy) F' (Xx) F" (i) Xk +1 X =g(b)
0.33333 0 -1.08310 0.00521 0.33855 033855  -1.09861]  -1.09861
1 -1.09861 0.00000]  0.33333 033333 -1.09861
XiB Xnp Xy
-2.00000] __-1.00000] __ 0.00000
f(Xg) f (X wp) f(Xus)
0.13534]  0.36788 1.00000
I nver se-Sine Function — Improved Method
b kK Xk F(Xx) F (X«) F* (Xk) Xi+1 x=g(b)
0.80000 0 0.94695 001164]  058416]  -0.81164] 092730 0.92730
1 0.92730 0.00000] 060000  -0.80000]  0.92730
XiB Xmp XuB
0.00000 0.75000 1.50000
f(X.s) f(Xwp) f(Xue)
0.00000 0.68164]  0.99749
I nver se-Tangent Function — Improved Method
b K Xk F(xy) F' (Xx) F" (i) Xk +1 X =g(b)
1.20000 0 0.87603] __-0.00007 243983 5.85524]  0.87606 0.87606
1 0.87606 0.00000 2.44000 5.85600]  0.87606
X LB X MP X UB
0.75000 0.87500 1.00000
f(Xg) f (X wp) f(Xus)
0.93160 119742 1.55741
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Dynamics|| (MECH 312)
Explicit Time Solutions— An Example Problem
Vertical Projectile Motion with a Drag Force

Vertical Projectile Motion Formulas
The formulas given below exactly describe the motion of a projectile which may be modeled as a

particle, has been vertically projected in a uniform gravitationa field, and is subjected to a drag
force that is proportional to the projectile speed squared: F, = kv

Note: Intheformulasbelow, k, v,, m, and g, should be regarded as known parameters.

e Ascent Relations: O<t<t,

y:%In{JlJr kvZ/(mg,) cos]\/kg,/m (ta—t)]}
v:«/mgo/ktan[w/kgO/m(ta—t)]
to=m/(kgo) tan [k@/(mgp)] . h="in[{1+ ki (mg,)]

e Descent Relations: t, <t <t
= 1+ kil (mg,) sl Jkeg,/m -]}
v=1/mg,/k tanh[fk g,/m (t-t,)]
ty =M/ (kg,) sirh*[k@/(mg,)] | v =——2

\/1+ kvZ/(mg,)

e Mathematical Definitions

2
el +et
gl —egt
el +et

sinh(u) = In[u+v1+u?]

Note: All of the relations above can be simplified via a parameter « , which is defined below.

sech(u) =

tanh(u) =
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¢ Notation/Terminology
t . elapsed time (from the projection instant)
y : projectile position (vertical displacement)
vV projectile speed
k : drag coefficient
v, : projection speed (initial speed)
m : particle mass
g, : Qravity constant
a . medium resistance intensity, defined by o = \/m
t, : ascenttime
h : maximum height
t, : descenttime
Vv, : impact speed
t, : impact instant, defined by t, =t, +t,

Note: t, and t; denote the durations of the ascent and descent phases, respectively, whereas t;
denotes the terminal value of t or (equivalently) the duration of the entire projectile motion.



MECH 312 — Dynamics II
Ascent Phase: 0 <7<z, Descent Phase: 7, <7<t
Governing Equation: m & —kv* Governing Equation: m 7 "8 —kv?
Ki tic Relation: Q—vgv— Ki tic Relation: —d—v——vﬂ
inematic Relation: a & inematic Relation: a d
Initial Conditions: v=v, , y=0 @ =0 Initial Conditions: v=0, y=h @ 1=1,
A
kv? kv?
A I
I
| |
v % m x v Om
h | \/
mg, y mg,
\
; |
| I
Vil
% v Y Y
|

| Reference Diagram — Vertical Projectile Motion with a Drag Force





