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Euclid’s Introduction to the
Section of the Canon

If all things were at rest and nothing moved, there must be
perfect silence in the world....For motion and percussion
must precede sound; so that as the immediate cause of
sound is some percussion, the immediate cause of all
percussion must be motion....And whereas of vibratory
impulses or motions causing a percussion on the
ear...the...greater number of such impulses produce the
higher sounds, whilst the slower which have fewer courses
and returns, produce the lower.



Sound Waves

• Sound waves are caused by the
vibratory displacement of air.

• Different sources of
displacement result in different
sounds.



Pitch and Frequency

• The pitch of a sound is
determined by the frequency of
the displacement.

• Higher frequency leads to higher
pitched sounds and vice versa.



Amplitude and Intensity

• The amount of displacement in
the air caused by the source of
the sound is referred to as the
amplitude of the sound waves.

• The greater the amplitude the
louder the sound or, the greater
the sound intensity.



Sound Waves

• Phonodeiks, oscilloscopes and
computer software can create
pictures of sound waves.

• These pictures show that sound
waves can be resolved into sums
of perfect sine waves.



Sine Waves



Middle C - clarinet



Middle C - oboe



Pythagorean Ratios

• The ancient Pythagoreans noted
that pleasing tones were
produced by vibrating strings
whose lengths could be
represented by a ratio of whole
numbers.



Pythagorean Ratios

• A vibrating string divided in two
parts will produce a tone an
octave higher than the original
tone, and the frequency of the
vibration will be double the
original frequency.

• Octave frequency ratio 2:1



Pythagorean Ratios

• A vibrating string two thirds the
original length will produce a
tone known as a fifth in relation
to the original tone, and the
frequency will be 1.5 times the
original.

• Fifth frequency ratio 3:2



Pythagorean Ratios

• A vibrating string three fourths
the original length will produce a
tone known as a fourth in
relation to the original tone, and
the frequency will be 4/3 the
original.

• Fourth frequency ratio 4:3



Pythagorean Ratios

• A fifth of the fourth is the octave.

• A fifth plus a fourth equals an
octave.

• The frequency relationships are
multiplicative so that 4/3 ∗ 3/2 = 2



Pythagorean Ratios
• These tones were used in early

four stringed Greek lyres, also
known as the Lyre of Orpheus.

• Root, fourth, fifth, octave

• Hermes, Apollo and Orpheus
were involved in the
mythological development of
the Greek lyre.



Greek Lyre



Pythagorean Ratios

• Pythagorean ratios can be
extended to create what is
known as the diatonic scale.

DO FA SO DO
1:1 4:3 3:2 2:1



Pythagorean Ratios
• If we find the fifth in relation to

the original fifth (SO), we find
another tone, with the ratio
being 3/2 ∗ 3/2 = 9/4.

• Since this is beyond the octave,
we reduce the tone by an
octave, cutting the frequency
ratio in half and resulting in a
ratio of 9:8.



Pythagorean Ratios

• Pythagorean ratios can be
extended to create what is
known as the diatonic scale.

DO RE FA SO DO
1:1 9:8 4:3 3:2 2:1



Pythagorean Ratios

• If we find the fifth in relation to
this new tone (RE), we find
another tone, with the ratio
being 9/8 ∗ 3/2 = 27/16.



Pythagorean Ratios

• Pythagorean ratios can be
extended to create what is
known as the diatonic scale.

DO RE FA SO LA DO
1:1 9:8 4:3 3:2 27:16 2:1



Pythagorean Ratios
• If we find the fifth in relation to

this tone (LA), we find another
tone, with the ratio being
27/16 ∗ 3/2 = 81/32.

• Since this is beyond the octave,
we reduce the tone by an
octave, cutting the frequency
ratio in half and resulting in a
ratio of 81:64.



Pythagorean Ratios

• Pythagorean ratios can be
extended to create what is
known as the diatonic scale.

DO RE MI FA SO LA DO
1:1 9:8 81:64 4:3 3:2 27:16 2:1



Pythagorean Ratios

• If we find the fifth in relation to
this tone (MI), we find another
tone, with the ratio being
81/64 ∗ 3/2 = 243/128.



Pythagorean Ratios

• Pythagorean ratios can be
extended to create what is
known as the diatonic scale.

DO RE MI FA SO LA TI DO
1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1



Pythagorean Ratios

• Pythagorean ratios can be
extended to create what is
known as the diatonic scale.

1 1.125 1.266* 1.333 1.5 1.688* 1.898* 2

DO RE MI FA SO LA TI DO
1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1



Diatonic Scales

• This is known as the Diatonic
Scale.



Diatonic Scales
• The Greeks created seven

diatonic scales or ”modes”
beginning with each of the
seven tones in the Pythagorean
diatonic scale.

• These modes were later
adapted by medieval church
musicians and became known
as the church modes.



Diatonic Scales

• Notice that the divisions or ratios
between the tones of the
Pythagorean diatonic scale are
not constant.



DO RE MI FA SO LA TI DO

1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1

RE
DO = 9

8
MI
RE = 9

8
FA
MI =

256
243

SO
FA = 9

8
LA
SO = 9

8
TI
LA = 9

8

DO
TI = 256

243



Diatonic Scales

• If we continue to create perfect
fifths for each tone of the
diatonic scale, we will encounter
an interesting phenomenon.



DO* 3/2 = SO RE* 3/2 = LA

MI* 3/2 = TI FA* 3/2 = DO (octave)

SO* 3/2 = RE (octave) LA* 3/2 = MI (octave)

TI* 3/2 = ? ?=729/256

729/512 ≈ 1.424



Pythagorean Ratios

• Pythagorean ratios can be
extended to create what is
known as the diatonic scale.

1 1.125 1.266* 1.333 1.5 1.688* 1.898* 2

DO RE MI FA SO LA TI DO
1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1





Diatonic Scale

• In the previous diagram the
Pythagorean comma appears
as the difference between the
notes A[ and G].

6561/4096
128/81

= 312

219 = 531441
524288



Diatonic Scale

• This Pythagorean comma also
appears as the difference
between the major tone ratio of
9:8 and the combination of two
semitone ratios of 256:243

(256
243)

2 = 216

310

9/8
216/310 =

312

219 = 531441
524288



DO RE MI FA SO LA TI DO

1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1

RE
DO = 9

8
MI
RE = 9

8
FA
MI =

256
243

SO
FA = 9

8
LA
SO = 9

8
TI
LA = 9

8

DO
TI = 256

243



Historical Use of Scales

• The Pythagorean or Diatonic
scales were used for many years.

• European musicians and
composers made various
adjustments to the diatonic
scales including meantone
temperament and well
temperament.



Equal Temperament

• An equal tempered scale would
erase the difference between G]

and A[ that arises in the just
intonation of the Diatonic scale.
An equal temperament dividing
the octave into 12 tones gives a
good approximation of the
diatonic scale.



Just Intonation

• Just intonation produces what
are known as ”wolf intervals.”
These are frequencies which
should sound ”nice” together,
but don’t because of the
Pythagorean comma.



Just Intonation

• Equal temperament eases these
wolf intervals, however, equal
temperament shifts the
frequencies off of the perfect
4ths and perfect 5ths.



Equal Temperament

• A Chinese work from about 400
AD shows string lengths in the
required ratios to give a very
good approximation of 12 tone
equal temperament.

• Ho-Tchheng Thyen devised a
series of string lengths as follows:



Pythagorean Ratios

Root Octave

5th century Chinese approximation
900 849 802 758 715 677 638 601 570 536 509.5 479 450

1 1.06 1.12 1.19 1.26 1.33 1.41 1.497 1.58 1.68 1.766 1.88 2

Modern 12 tone equal temperament
1 1.06 1.12 1.19 1.26 1.33 1.41 1.498 1.59 1.68 1.78 1.89 2



Equal Temperament

12√2 Ratio 12√2 Ratio
1 1

1.059 1.060 1.4983 1.4975
1.122 1.122 1.5874 1.5789
1.1892 1.1873 1.6818 1.6791
1.2599 1.2587 1.7818 1.766
1.3348 1.3294 1.8877 1.8789
1.4142 1.41066 2 2



Equal Temperament

• In the late 16th century, Zhu
Zaiyu (1584) determined a
method for 12 tone equal
temperament based on the
twelfth roots of 2

( 12√2
)
.



Equal Temperament
• A jesuit named Matteo Ricci was

visiting China at the time. He
recorded this information and
returned with it to Europe, where
Simon Stevin (1585) and Marin
Mersenne (1636) would begin
build a case for equal
temperament in European
music.



Equal Temperament

• In equal temperament the ratios
of the twelve tones must be
equal and the product of these
twelve ratios must equal 2.

• x12 = 2



Equal Temperament

• In addition, the perfect fourth
and perfect fifth should be well
approximated within the scale.

• xa = 4/3

AND

• xb = 1.5



Equal Tempered Scale

• Essentially, we are looking for a
series of numbers that satisfy the
following equations:

• x12 = 2

• xa ≈ 4/3

• xb ≈ 1.5



Equal Tempered Scale

• If x12 = 2, then x =
12√2 ≈ 1.06

then

• x5 = 25/12 ≈ 1.3348
and

• x7 = 27/12 ≈ 1.4983

• These are ”pretty good” approximations of the
perfect fourth and perfect fifth.



Pythagorean Ratios

Root Octave

Diatonic Scale
1 1.125 1.266* 1.333 1.5 1.688* 1.898* 2

DO RE MI FA SO LA TI DO

12 tone equal temperament
1 1.06 1.12 1.19 1.26 1.33 1.41 1.498 1.59 1.68 1.78 1.89 2



Equal Tempered Scale

C 261.63 hz F] 370 hz
C] 277.18 hz G 392 hz
D 293.66 hz G] 415.3 hz
D] 311.13 hz A 440 hz
E 329.63 hz B[ 466.16 hz
F 349.23 hz B 493.88 hz

C 523.25 hz



1 1.125 1.266* 1.333 1.5 1.688* 1.898* 2

DO RE MI FA SO LA TI DO

1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1

C D E F G A B C

1 1.122 1.26 1.3348 1.4983 1.6818 1.8877 2

C ] D] F] G] B[

1.059 1.1892 1.4142 1.5874 1.7818



Indian Scale

• Some Indian music uses a scale
that has similar ratios to the
diatonic scale. An Indian svara
consisting of the notes

SA RE GA MA PA DHA NI SA

corresponds very closely to the
ratios from the diatonic scale.



Diatonic Scale

DO RE MI FA SO LA TI DO

1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1

Indian Scale

SA RE GA MA PA DHA NI SA

1:1 9:8 5:4 4:3 3:2 5:3 15:8 2:1



Indian Scale

• However the root tone is often a
different frequency than the
standard western tuning of A440.



Diatonic Scale

C D E F G A B C

261.6 293.7 329.6 349.2 392 440 493.9 523.2

Indian Scale

SA RE GA MA PA DHA NI SA

240 270 300 320 360 400 450 480



Equal Tempered Scale

• If we return to the concept of an
equal tempered scale, there are
other ways to divide the octave
into equal steps.



Equal Tempered Scale
• The problem can be framed by

attempting to find a satisfactory
solution to the following problem:

2p/q ≈ 3/2 = 1.5

• This represents an attempt to use
an irrational number (( q

√
2)p) to

approximate a rational number
(3/2)



Equal Tempered Scale

2p/q ≈ 3/2

(p/q) log 2 ≈ log 3/2

(p/q) log 2 ≈ log 3− log 2

(p/q) ≈ log 3
log 2 − 1



Equal Tempered Scale

(p/q) ≈ log 3
log 2 − 1 ≈ 0.5849625007...

• Other equal-tempered scales
can be developed through
attempts to approximate this
number.



Equal Tempered Scale

• In the 19 tone scale, the 11th

tone is the musical fifth (1.5) and
the 8th tone is the musical fourth
(4/3)

211/19 ≈ 1.49376

28/19 ≈ 1.3389



Equal Tempered Scale

• In the 31 tone scale, the 18th

tone is the musical fifth (1.5) and
the 13th tone is the musical fourth
(4/3)

218/31 ≈ 1.4955

213/31 ≈ 1.33733



Equal Tempered Scale

• In the 41 tone scale, the 24th

tone is the musical fifth (1.5) and
the 17th tone is the musical fourth
(4/3)

224/41 ≈ 1.50042

217/41 ≈ 1.33296



Equal Tempered Scale

• It is also possible to approximate
the value of

log 3
log 2 − 1 ≈ 0.5849625007...

using a process of continued
fractions.



Equal Tempered Scale

• The approximation is

log 3
log 2 − 1 =

1

1 +
1

1 +
1

2 +
1

2 +
1

3 +
1
. . .



Equal Tempered Scale
• This fraction can be created

through successive
approximation. We know the
decimal approximation as
0.5849625007..., so we can see
that if we approximate this value
with a fraction whose numerator
is 1, then the denominator must
be between 1 and 2.



Equal Tempered Scale

• So,

log 3
log 2 − 1 =

1

1 +
1
?

Each choice of a denominator leads to
a successive fractional value, which
continues the fraction - indefinitely in
the case of an irrational number.



Equal Tempered Scale

• We can stop the process along
the way for a rational
approximation of the irrational
value we’re searching for.



Equal Tempered Scale

• The approximation is

log 3
log 2 − 1 =

1

1 +
1

1 +
1

2 +
1

2 +
1

3 +
1
. . .



Equal Tempered Scale
log 3
log 2 − 1 ≈

1

1 +
1

1 +
1

2 + 1/2

=

1

1 +
1

1 +
1

5/2

=
1

1 +
1

1 + 2/5

=
1

1 +
1

7/5



Equal Tempered Scale

log 3
log 2 − 1 ≈

1

1 +
1

7/5

=
1

1 + 5/7
=

1
12/7

= 7
12



Equal Tempered Scale

log 3
log 2 − 1 ≈

1

1 +
1

1 +
1

2 +
1

2 +
1
3



Equal Tempered Scale

log 3
log 2 − 1 ≈

1

1 +
1

1 +
1

2 + 3/7



Equal Tempered Scale

=
1

1 +
1

1 +
1

17/7

=
1

1 +
1

1 + 7/17

=
1

1 +
1

24/17



Equal Tempered Scale

log 3
log 2 − 1 ≈

1
1 + 17/24

=
1

41/24
= 24/41



Musical Scales

• This is part of the reason why the
12-tone and 41-tone scales give
such good approximations of
the Pythagorean tones or Just
Intonation.



Pythagorean Ratios
• The Pythagoreans knew that the

tones produced by vibrating
strings were related to the length
of the string.

• They also knew that strings in
lengths of small whole number
ratios produced pleasing tones
when played together - musical
fourth, fifth and octave.



Frequency

• The concept of vibrational
frequency was considered to be
related to the length of the
string.

• Galileo focused on the concept
of vibrational frequency as
opposed to the ratio of lengths
in determining musical pitch.



Frequency

”I say that the length of the strings is not
the direct and immediate reason behind
the forms of musical intervals, nor is their
tension, nor their thickness, but rather, the
ratio of the numbers of vibrations and
impact of air waves that go to strike our
eardrum, which likewise vibrates
according to the same measure of times.”

- Galileo (1638)



Frequency

• How do we determine the
frequency of a vibrating string?

• By the early 1600’s Mersenne
knew that the frequency and
pitch of a vibrating string were
related to:



Frequency

• ` = length

• F = tension

• σ = cross sectional area

• ρ = density



Frequency

Building on Mersenne’s work and
using a pendulum analogy, Joseph
Saveur and Christiaan Huygens
determined the freuqency to be:

ν ≈ 1
2`

√
F
ρσ



Frequency

• Sauveur used ”beats” and ratios
to determine absolute
frequency.

• Beats are a musical
phenomenon well-known to
musicians and used often in
tuning instruments.



Frequency

• One definition of beats is that
they are ”periodic fluctuations of
loudness produced by the
superposition of tones of close,
but not identical frequencies.”



Frequency

• The number of beats per second
is actually equal to the
difference in the absolute
frequencies of the two tones.

• There are two ways to show that
this is true. One uses algebra, the
other trigonometry.



Beats Per Second

• To show that the number of
beats per second is equal to the
difference between the
frequencies of the tones, we
must consider what is happening
acoustically.

• One of the frequencies is higher
that the other.



Beats Per Second
• One of the frequencies is higher

thant the other. That means that
the higher frequency will have
more wavelengths per second
than the lower frequency. The
beats are a result of the two
wavelengths coinciding to
produce a momentarily louder
tone.



Beats Per Second

For instance, if two tones are 8 hertz
(8 wavelengths per second) and 6
hertz, then the higher frequency
wavelength will have wave peaks
at:

t = 0, 1
8,

2
8,

3
8,

4
8,

5
8,

6
8,

7
8 and t = 1 second



Beats Per Second

The lower frequency will have wave
peaks at:

t = 0, 1
6,

2
6,

3
6,

4
6,

5
6 and t = 1 second

So, they will coincide at t = 0, t = 1
2

and then t = 1, t = 1.5 and so on, or
twice each second.



Beats Per Second

• In the example, when the 8 hertz
wavelength had completed 4
waves, the 6 hertz wavelength
had only completed 3 waves.

• When the higher frequency
completes one more wave than
the lower frquency, they will
coincide and produce a beat.



Beats Per Second

• Any mathematician knows that
one example doesn’t prove
anything, so let’s consider the
idea in general.

• What is happening is that the
higher frequency ”laps” the
lower frequency.



Beats Per Second

So, given two frequencies f1 and f2,
with f2 > f1, we want to find out how
many wavelengths it will take for f2

to complete one more wavelength
than f1.



Beats Per Second

So we set:
N
f1

=
N + 1

f2

N ∗ f2 = (N + 1) ∗ f1



Beats Per Second

Or:

N ∗ f2 = (N + 1) ∗ f1

N ∗ f2 = N ∗ f1 + f1

N ∗ f2 − N ∗ f1 = f1

N(f2 − f1) = f1

N =
f1

(f2 − f1)



Beats Per Second

In our example f1 was 6 and f2 was 8,
so this value for N would come out
to:

N = 6
8−6 = 6

2 = 3



Beats Per Second

This is what we saw, the wavelengths
coincided on the 3rd wave of the 6
hertz frequency and the 4th wave of
the 8 hertz frequency.



Beats Per Second

The time period for the first beat was
3
6 seconds or

N
f1

.

If N =
f1

f2 − f1
, then

N
f1

=

f1
f2−f1

f1
=

f1

f2 − f1
∗ 1

f1
=

1
f2 − f1



Beats Per Second

In our example, the beats occured
every 1

2 second, so there were 2
beats per second. In general, the

beats occur every
1

f2 − f1
seconds,

so there are f2 − f1 beats per second.



Beats Per Second

Showing this relationship using
trigonometry uses the
Sum-to-Product Identity:

sina + sinb = 2 sin a+b
2 cos a−b

2



Beats Per Second

This comes from the standard sine
sum and difference identities:

sin(x + y) = sin x cos y + cos x sin y

and

sin(x − y) = sin x cos y − cos x sin y



Beats Per Second

If we add these two together, we
get:

sin(x + y) + sin(x − y) = 2 sin x cos y

Let x + y = a and x − y = b, then

x = a+b
2 and y = a−b

2



Beats Per Second

Then:

sin(x + y) + sin(x − y) = 2 sin x cos y

becomes

sina + sinb = 2 sin a+b
2 cos a−b

2



Beats Per Second
In the cos a−b

2 term, we see that the
addition of two sound waves ends
up being identical to a sound wave
with a frequency equal to the
difference of the waves and a
variable amplitude. The frequency is
actually half the difference, but the
beats occur on both maximum and
minimum values, which is double the
frequency of the actual wave.



Beats Per Second

−4 −2 2 4

−1

1



Frequency

• Sauveur used ”beats” and ratios
to determine absolute
frequency.

• We’ve seen that beats can
determine the difference
between two frequencies.



Frequency

• If we use the approximation for
frequency developed by
Sauveur and Huygens, we can
see that the ratio of two
frequencies is the inverse ratio of
the their lengths, assuming that
they have equal tension ,
cross-section, and density.



Frequency

f2

f1
=

1
2`2

√
F
ρσ

1
2`1

√
F
ρσ

f2

f1
=

1
2`2
1

2`1



Frequency

f2

f1
=

1
2`2
∗ 2`1

1
=
`1

`2



Calculating Frequency
• So, if we know the ratio of two

frequencies and we know the
difference of two frequencies,
then we can calculate what the
frequencies themselves are.

• This is one method of hand
calculating the frequencies of
the notes in the Eurolean equal
tempered scale.



Calculating Frequency
If we have two frequencies f1 and f2,
with f2 > f1, then:

f2 − f1 = d

and

f2

f1
= r

Then we can calculate f1 and f2.



Calculating Frequency

f2

f1
= r

f2

r
= f1



Calculating Frequency
Then isolate f2 from the equation

f2 − f1 = d

So

f2 = d + f1

And substitute into the other
equation, giving us:

d + f1

r
= f1



Calculating Frequency

d + f1

r
= f1

d + f1 = r ∗ f1

d = r ∗ f1 − f1

d
r − 1

= f1



Calculating Frequency

An example -

What if we had two strings - one that
was 111 cm long and one that was
110 cm long? We know that the ratio
of their frequencies is the reciprocal
of the ratio of their length.



Calculating Frequency
f2

f1
=
`1

`2

So,

f2

f1
=

111
110

Imagine that we plucked each string
under equal tension and counted 2
beats per second in the sound.



Calculating Frequency

In this example

r =
f2

f1
=

111
110

and

d = f2 − f1 = 2



Calculating Frequency

Remember that
d

r − 1
= f1

so
2

111
110 − 1

= f1

2
1

110

= 2 ∗ 110 = 220 = f1



Calculating Frequency

This is the A note below middle C.
The higher frequency sound is 222
hertz, which is somewhere between
A and A].



Musical Scales

• As is true of many things, musical
scales are dependent upon
human choices and these
choices can be investigated
and evaluated using
mathematics.



Musical Scales

• However, it is nice to just sit back
and enjoy the music!


