Linear Regression, Linearization, Linear Algebra and All That

Jim Fischer

Oregon Institute of Technology

jim.fischer@oit.edu

April 27, 2018

Jim Fischer (Oregon Tech)

Linear Regression and Linear Algebra

April 27, 2018 1 / 34

Chinook Juvenile Salmon

Length (mm)	Weight (g)
35	0.3
36	0.3
38	0.4
39	0.4
38	0.5
39	0.5
41	0.6
:	:
· ·	

Table: Chinook Juvenile Salmon. Redwook Creek (CA)

Image: A math a math

Jim Fischer (Oregon Tech)

• Find the best fit line to a collection of data (x_i, y_i) , and determine a measure of the strength of the linear relationship.

- Find the best fit line to a collection of data (x_i, y_i) , and determine a measure of the strength of the linear relationship.
- The equation of the line is:

$$\hat{y}_i = mx_i + b$$

We would like to determine the slope m and intercept b so that the total of the squared residuals is minimized.

- Find the best fit line to a collection of data (x_i, y_i) , and determine a measure of the strength of the linear relationship.
- The equation of the line is:

$$\hat{y}_i = mx_i + b$$

We would like to determine the slope m and intercept b so that the total of the squared residuals is minimized.

Minimize:
$$E(m, b) = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

۵

. . .

• Find *m* and *b* to minimize total least squares error:

$$E(m, b) = \sum_{i=1}^{N} (\hat{y}_i - y_i)^2$$

• We compute the partial derivatives and set them equal to zero:

$$\frac{\partial E}{\partial m} = -2\sum_{i=1}^{N} x_i (\hat{y}_i - y_i) = 0$$
$$\frac{\partial E}{\partial b} = -2\sum_{i=1}^{N} (\hat{y}_i - y_i) = 0$$

• By factoring out the *m* and *b* and rearranging terms the system looks like:

$$m\sum_{i} x_{i}^{2} + b\sum_{i} x_{i} = \sum_{i} x_{i} y_{i}$$
$$m\sum_{i} x_{i} + b\sum_{i} 1 = \sum_{i} y_{i}$$

• This linear system of equation can be solved, for example, using Cramer's rule:

$$m = \frac{n\sum(x_iy_i) - \sum x_i\sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$
$$b = \frac{\sum x_i^2\sum y_i - \sum x_i\sum (x_iy_i)}{n\sum x_i^2 - (\sum x_i)^2}$$

• The solution exists and is unique provided that

$$n\sum x_i^2 - \left(\sum x_i\right)^2 \neq 0$$

Using the 2nd Derivative test for functions of two variables it is straight-forward to show that the unique solution corresponds to an absolute minimum

•
$$\frac{\partial^2 E}{\partial m^2} = 2 \sum x_i^2 > 0$$
 and $D(m, b) = 4 \left(n \sum x_i^2 - (\sum x_i)^2 \right) > 0$ implies the solution is a local minimum.

• E is continuous over R^2 and has one critical point, therefore the solution is an absolute minimum.

• If the data (x_i, y_i) lie perfectly on a line, then:

<i>y</i> ₁	=	$mx_1 + b$	$\begin{bmatrix} y_1 \end{bmatrix}$	<i>x</i> ₁ 1]
<i>y</i> ₂	=	$mx_2 + b$	<i>y</i> ₂	<i>x</i> ₂ 1	[<i>m</i>]
	÷		$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} z \\ z \\ z \end{bmatrix}$: :	[[b]
Уn	=	$mx_n + b$	$\begin{bmatrix} y_n \end{bmatrix}$	<i>x</i> _n 1	

• If the data (x_i, y_i) lie perfectly on a line, then:

$y_1 = mx_1 + b$	$\begin{bmatrix} y_1 \end{bmatrix} \begin{bmatrix} x_1 & 1 \end{bmatrix}$
$y_2 = mx_2 + b$	y_2 x_2 1 m
:	$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$
$y_n = mx_n + b$	$\begin{bmatrix} y_n \end{bmatrix} \begin{bmatrix} x_n & 1 \end{bmatrix}$

• Or more simply as:

$$\vec{y} = Ac$$
.

• If the data (x_i, y_i) lie perfectly on a line, then:

$y_1 =$	$mx_1 + b$	$\begin{bmatrix} y_1 \end{bmatrix}$]	$\int x_1$	1]	
<i>y</i> ₂ =	$mx_2 + b$	<i>y</i> ₂		<i>x</i> ₂	1	[m]
:		:	=	:	:	$\begin{bmatrix} m \\ b \end{bmatrix}$
$y_n =$	$mx_n + b$	yn_		x _n	1	

• Or more simply as:

$$\vec{y} = Ac$$
.

• Note that \vec{y} is a vector in the column space of A.

Typically the data (x_i, y_i) does not lie perfectly on a line, and so we seek a solution ŷ (a vector in the column space of A) that is "closest" in some sense.

- Typically the data (x_i, y_i) does not lie perfectly on a line, and so we seek a solution ŷ (a vector in the column space of A) that is "closest" in some sense.
- When we choose "closest" to mean the least total squares error, then the solution turns out to be the orthogonal projection of **y** onto the column space of A where A is the matrix:

$$A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix}$$

A Geometric Viewpoint

April 27, 2018 10 / 34

• Since $\hat{y} \in Col(A)$, \hat{y} must be of the form $\hat{y} = Ac$.

- Since $\hat{y} \in \text{Col}(A)$, \hat{y} must be of the form $\hat{y} = Ac$.
- Finding the vector \hat{y} such that $\vec{y} \hat{y}$ is orthogonal to the column space of A boils down to solving the "normal" equation(s):

$$\begin{array}{rcl} A^T \left(\vec{y} - \hat{y} \right) &=& \vec{0} \\ A^T A \boldsymbol{c} &=& A^T \bar{y} \end{array}$$

- Since $\hat{y} \in \text{Col}(A)$, \hat{y} must be of the form $\hat{y} = Ac$.
- Finding the vector \hat{y} such that $\vec{y} \hat{y}$ is orthogonal to the column space of A boils down to solving the "normal" equation(s):

$$\begin{array}{rcl} A^T \left(\vec{y} - \hat{y} \right) &=& \vec{0} \\ A^T A \boldsymbol{c} &=& A^T \bar{y} \end{array}$$

- Since $\hat{y} \in \text{Col}(A)$, \hat{y} must be of the form $\hat{y} = Ac$.
- Finding the vector \hat{y} such that $\vec{y} \hat{y}$ is orthogonal to the column space of A boils down to solving the "normal" equation(s):

$$\begin{array}{rcl} A^T \left(\vec{y} - \hat{y} \right) &=& \vec{0} \\ A^T A \boldsymbol{c} &=& A^T \bar{y} \end{array}$$

• Provided $A^T A$ is invertible, the solution is given by:

$$\boldsymbol{c} = (A^T A)^{-1} A^T \boldsymbol{\vec{y}}$$

• The Linear Algebra approach nicely lends itself to other models :

- The Linear Algebra approach nicely lends itself to other models :
- For example, to find the best (least squares) fit parabola, just change the matrix A by adding a column of squared values:

$$\hat{\boldsymbol{y}} = A\boldsymbol{c} = \begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ \vdots & \vdots \\ x_N^2 & x_N & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{b} \\ \boldsymbol{c} \end{bmatrix}$$

- The Linear Algebra approach nicely lends itself to other models :
- For example, to find the best (least squares) fit parabola, just change the matrix A by adding a column of squared values:

$$\hat{y} = Ac = \begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ \vdots & \vdots \\ x_N^2 & x_N & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

 To find the best fit polynomial, simply add more columns. To fit a kth degree polynomial, the matrix A would have shape N × (k + 1) • To fit a finite fourier-sine series :

$$A = \begin{bmatrix} \sin(x_1) & \sin(2x_1) & + \dots + & \sin(kx_1) \\ \sin(x_2) & \sin(2x_2) & + \dots + & \sin(kx_2) \\ \vdots & \vdots & \vdots & \vdots \\ \sin(x_N) & \sin(2x_N) & + \dots + & \sin(kx_N) \end{bmatrix}$$

• In any case where the modeling function has coefficients that appear linearly, we can use the matrix setup.

- In any case where the modeling function has coefficients that appear linearly, we can use the matrix setup.
- The normal equations and the solution remain the same:

$$A^{\mathsf{T}}A\boldsymbol{c} = A^{\mathsf{T}}\boldsymbol{\vec{y}}$$
$$\boldsymbol{c} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\boldsymbol{\vec{y}}$$

- In any case where the modeling function has coefficients that appear linearly, we can use the matrix setup.
- The normal equations and the solution remain the same:

$$A^{\mathsf{T}}A\boldsymbol{c} = A^{\mathsf{T}}\boldsymbol{\vec{y}}$$
$$\boldsymbol{c} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\boldsymbol{\vec{y}}$$

• The vector of estimated values \hat{y} is given by:

$$\hat{y} = Ac$$

Existence and Uniqueness of the Solution

A Pair of Nice Results from Linear Algebra:

Theorem (1)

For any matrix A, the null space of A is equal to the null space of $A^T A$.

Existence and Uniqueness of the Solution

A Pair of Nice Results from Linear Algebra:

Theorem (1)

For any matrix A, the null space of A is equal to the null space of $A^T A$.

Theorem (2)

For any matrix A, the matrix $A^T A$ is invertible (nonsingular) if and only if the columns of A form a linearly independent set of vectors.

Proof of Theorem 1: $null(A) = null(A^T A)$

 (\Rightarrow) Suppose that $\vec{x} \in \text{null}(A)$, so that $A\vec{x} = \vec{0}$. It follows that $A^T A \vec{x} = \vec{0}$ and so \vec{x} is in the null space of $A^T A$.

(\Leftarrow) Suppose that $\vec{x} \in \text{null}(A^T A)$, so that $A^T A \vec{x} = \vec{0}$. Multiply both sides of this equation by \vec{x}^T :

$$A^{T}A\vec{x} = \vec{0}$$
$$\vec{x}^{T}A^{T}A\vec{x} = \vec{x}^{T} \cdot \vec{0}$$
$$(A\vec{x})^{T}(A\vec{x}) = 0$$
$$||A\vec{x}||^{2} = 0$$
$$A\vec{x} = \vec{0}$$

Therefore \vec{x} is in the null space of A.

Proof of Theorem 2: $A^T A$ is nonsingular if and only if the columns of A form a L.I. set of a vectors

This theorem follows from Theorem 1 and the following two facts:

- For any square matrix B, the matrix is invertible if and only if its null space is trivial: null $(B) = \left\{ \vec{0} \right\}$.
- For any matrix A, The null space of A is trivial if and only if the columns of A form a linearly independent set of vectors.

Theorem (The Fundamental Regression Theorem)

Let A be the matrix associated with a linear regression model. If the columns of A form a linearly independent set of $N \times k$ vectors, then there exists a unique solution cto the least squares problem. Where c is the column of coefficients for the modeling function (polynomial, fourier, etc.)

$$\boldsymbol{c} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \vec{\boldsymbol{y}}$$
 and $\hat{\boldsymbol{y}} = \boldsymbol{A} \boldsymbol{c}$

Theorem (Orthogonal Projection)

Let V be a vector space in \mathbb{R}^n and suppose W is a subspace of V with dimension less than n. If $\vec{y} \in V$ and $\vec{y} \notin W$, then there exists a unique $\hat{y} \in W$ such that $\vec{y} - \hat{y} \perp W$.

Theorem (Orthogonal Projection)

Let V be a vector space in \mathbb{R}^n and suppose W is a subspace of V with dimension less than n. If $\vec{y} \in V$ and $\vec{y} \notin W$, then there exists a unique $\hat{y} \in W$ such that $\vec{y} - \hat{y} \perp W$.

Theorem (Orthogonal ⇔ Shortest distance)

The orthogonal condition is equivalent to: If \vec{w} is any vector in W, then $||\vec{y} - \hat{y}|| \le ||\vec{y} - \vec{w}||$.

イロト イ理ト イヨト イヨト

Orthogonal Projection

Image: A matrix A

3

• The regression problem will almost always have a unique solution since the x data will usually be distinct.

Correlation and Goodness of Fit

- The regression problem will almost always have a unique solution since the x data will usually be distinct.
- However, the least squares error is not a good measure of how well the model approximates the dependent variable y. For example, we can find a linear model to approximate data that is clearly not linear:

Jim Fischer (Oregon Tech)

• A good way to see if the model is a good fit is to compute the correlation coefficient *r* :

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}$$

• A good way to see if the model is a good fit is to compute the correlation coefficient *r* :

$$r = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}}$$

• Note that this expression could be interpreted as the cosine of an angle by comparing the formula for *r* and the formula:

$$\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|||\mathbf{w}||\cos(\theta)$$

• While the angle shown below is not really the same angle as $\cos^{-1}(r)$, it is not unrelated and makes a reasonable interpretation.

Jim Fischer (Oregon Tech)

Data Set	r	$\cos^{-1}(r)$	$\cos(heta)$	θ
Beam Project	0.9953273	5.5°	0.999996	0.2°
First Regression Slide	0.886456	27.6°	0.974923	12.9°
Low r Value Slide	0.017442	89.3°	0.012781	89.0°
Salmon Data (n=1940)	0.982955	10.6°	0.98317	10.50

Table: Comparing r with the cosine of the angle between \vec{y} and \hat{y} .

Differential Equations Group Project

• Recall the beam equation:

$$\frac{d^4y}{dx^4} = \frac{w}{EI}$$

- Students in a differential equations class measure deflections of a flexible beam. Two cases: embedded both ends, embedded one end and free on the other.
- They use software such as Excel to create scatter-plot and include a best fit 4th degree polynomial for each case.
- Students differentiate the polynomial 4 times to recover (estimate) the constant $K = \frac{w}{El}$.
- Next they compare the constants *K* obtained for the two different set of boundary conditions. They should be close?

Typical Graph Submitted by Students

April 27, 2018 26 / 34

• When completing the DE student project, students were instructed to measure in centimeters. (length of beam was about 200 cm, deflections from 0 to about 10 cm).

- When completing the DE student project, students were instructed to measure in centimeters. (length of beam was about 200 cm, deflections from 0 to about 10 cm).
- When using centimeters, the coefficients for the best fit 4th degree polymomial appeared to be inaccurate. In some cases yielding negative values for *K*. The values obtained for *K* were extremely small and susceptable to error.

- When completing the DE student project, students were instructed to measure in centimeters. (length of beam was about 200 cm, deflections from 0 to about 10 cm).
- When using centimeters, the coefficients for the best fit 4th degree polymomial appeared to be inaccurate. In some cases yielding negative values for *K*. The values obtained for *K* were extremely small and susceptable to error.
- When changing the data to meters by simply dividing all measurements by 100, the accuracy of regression results was greatly improved.

• Using the student data, the instructor created the matrices $A^T A$ and used Matlab to estimate the condition number of the matrices.

- Using the student data, the instructor created the matrices $A^T A$ and used Matlab to estimate the condition number of the matrices.
- When using the measurements in centimeters, the condition number was very large:

 $cond(A^TA) \approx 10^{18}$

- Using the student data, the instructor created the matrices $A^T A$ and used Matlab to estimate the condition number of the matrices.
- When using the measurements in centimeters, the condition number was very large:

$$cond(A^TA) pprox 10^{18}$$

• When using the measurements in meters, the condition number improved:

$$\mathit{cond}(A^{\mathsf{T}}A) pprox 10^5$$

- Using the student data, the instructor created the matrices $A^T A$ and used Matlab to estimate the condition number of the matrices.
- When using the measurements in centimeters, the condition number was very large:

$$cond(A^TA) pprox 10^{18}$$

• When using the measurements in meters, the condition number improved:

$$cond(A^TA) pprox 10^5$$

• It is known that computational error can result when the condition number exceeds $\approx 10^{16}.$

Chinook Juvenile Salmon: Linear Model and Exponential Model

April 27, 2018 29 / 34

- < A

Chinook Juvenile Salmon: Power Model and Quadratic Model

Image: Image:

April 27, 2018 30 / 34

Desired nonlinear model	Typical y _i	Transformation to linear model
Exponential	$y_i = m e^{bx_i}$	$\ln(y_i) = \ln(m) + bx_i$
Power	$y_i = A x^B$	$\ln(y_i) = \ln(A) + B \ln(x_i)$

Table: Some common transformations

э

- Together with matrix software like MATLAB, Octave, Python,... the linear algebra approach to regression is an effective/efficient way to model data.
- The "general linear model" provides a framework for many types of curve fitting scenarios.
- The linear algebra approach gives a geometric view that is conceptually "pleasing".
- The linear algebra theorems can be generalized to more abstract settings, e.g. Hilbert Spaces.
- There is a rich amount of statistical analysis associated with linear regression.

- 1 Fogarty T, Waterman G., *Deflection of a Horizontal Beam*, SIMIODE, 2016
- 2 Michael Sparkman, Biologist, Calif. Dept. of Fish and Wildlife,
- 3 Professor Randall Paul, OIT Mathematics Dept.
- 4 Wikipedia: General Linear Model/ Generalized Linear Model

The End

Thanks for Listening!

Jim Fischer (Oregon Tech)

Linear Regression and Linear Algebra

April 27, 2018 34 / 34