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Chinook Juvenile Salmon

Length (mm) Weight (g)
35 0.3
36 0.3
38 0.4
39 0.4
38 0.5
39 0.5
41 0.6

.

.

.

.

.

.

Table: Chinook Juvenile
Salmon. Redwook Creek
(CA)
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Least Squares Linear Regression

Find the best fit line to a collection of data (xi , yi ), and determine a
measure of the strength of the linear relationship.

The equation of the line is:

ŷi = mxi + b

We would like to determine the slope m and intercept b so that the
total of the squared residuals is minimized.

Minimize: E (m, b) =
N∑
i=1

(ŷi − yi)
2

...
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(ŷi − yi)
2

...

Jim Fischer (Oregon Tech) Linear Regression and Linear Algebra April 27, 2018 3 / 34



Least Squares Linear Regression

Find the best fit line to a collection of data (xi , yi ), and determine a
measure of the strength of the linear relationship.

The equation of the line is:
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Linear Least Squares Regression

|ŷi − yi |

xi

ŷi

yi

x

y ŷ = mx + b

Find m and b to minimize total
least squares error:

E (m, b) =
∑N

i=1(ŷi − yi )
2
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Calculus Solution

We compute the partial derivatives and set them equal to zero:

∂E

∂m
= −2

N∑
i=1

xi (ŷi − yi ) = 0

∂E

∂b
= −2

N∑
i=1

(ŷi − yi ) = 0

By factoring out the m and b and rearranging terms the system looks
like:

m
∑

x2i + b
∑

xi =
∑

xiyi

m
∑

xi + b
∑

1 =
∑

yi
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This linear system of equation can be solved, for example, using
Cramer’s rule:

m = =
n
∑

(xiyi )−
∑

xi
∑

yi

n
∑

x2i − (
∑

xi )
2

b =

∑
x2i
∑

yi −
∑

xi
∑

(xiyi )

n
∑

x2i − (
∑

xi )
2

The solution exists and is unique provided that

n
∑

x2i −
(∑

xi

)2
6= 0
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Calculus Solution Continued

Using the 2nd Derivative test for functions of two variables it is
straight-forward to show that the unique solution corresponds to an
absolute minimum

∂2E

∂m2
= 2

∑
x2i > 0 and D(m, b) = 4

(
n
∑

x2i − (
∑

xi )
2
)
> 0

implies the solution is a local minimum.

E is continuous over R2 and has one critical point, therefore the
solution is an absolute minimum.
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Linear Algebra Approach

If the data (xi , yi ) lie perfectly on a line, then:

y1 = mx1 + b

y2 = mx2 + b
...

yn = mxn + b


y1
y2
...
yn

 =


x1 1
x2 1
...

...
xn 1


[
m
b

]

Or more simply as:
~y = Ac .

Note that ~y is a vector in the column space of A.
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Linear Algebra Approach Continued ...

Typically the data (xi , yi ) does not lie perfectly on a line, and so we
seek a solution ŷ ( a vector in the column space of A ) that is
”closest” in some sense.

When we choose ”closest” to mean the least total squares error, then
the solution turns out to be the orthogonal projection of y onto the
column space of A where A is the matrix:

A =


x1 1
x2 1
...

...
xn 1
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A Geometric Viewpoint

ŷ ∈ Col(A) = span
([
~x ~1

])ŷ

~y ~y − ŷ
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Linear Algebra Approach Continued ...

Since ŷ ∈ Col(A), ŷ must be of the form ŷ = Ac .

Finding the vector ŷ such that ~y − ŷ is orthogonal to the column
space of A boils down to solving the ”normal” equation(s):

AT (~y − ŷ) = ~0

ATAc = AT~y

Provided ATA is invertible, the solution is given by:

c = (ATA)−1AT~y
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Since ŷ ∈ Col(A), ŷ must be of the form ŷ = Ac .
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ATAc = AT~y

Provided ATA is invertible, the solution is given by:

c = (ATA)−1AT~y

Jim Fischer (Oregon Tech) Linear Regression and Linear Algebra April 27, 2018 11 / 34



Linear Algebra Approach Continued ...
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Other Regression Models: Polynomials

The Linear Algebra approach nicely lends itself to other models :

For example, to find the best (least squares) fit parabola, just change
the matrix A by adding a column of squared values:

ŷ = Ac =


x21 x1 1
x22 x2 1
...

...
x2N xN 1


ab
c


To find the best fit polynomial, simply add more columns. To fit a
kth degree polynomial, the matrix A would have shape N × (k + 1)
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Other Regression Models: Fourier Series

To fit a finite fourier-sine series :

A =


sin(x1) sin(2x1) + · · ·+ sin(kx1)
sin(x2) sin(2x2) + · · ·+ sin(kx2)

...
...

...
...

sin(xN) sin(2xN) + · · ·+ sin(kxN)
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Other Regression Models

In any case where the modeling function has coefficients that appear
linearly, we can use the matrix setup.

The normal equations and the solution remain the same:

ATAc = AT~y

c = (ATA)−1AT~y

The vector of estimated values ŷ is given by:

ŷ = Ac
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Existence and Uniqueness of the Solution

A Pair of Nice Results from Linear Algebra:

Theorem (1)

For any matrix A, the null space of A is equal to the null
space of ATA.

Theorem (2)

For any matrix A, the matrix ATA is invertible
(nonsingular) if and only if the columns of A form a
linearly independent set of vectors.
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Proof of Theorem 1: null(A) = null(ATA)

(⇒) Suppose that ~x ∈ null(A), so that A~x = ~0. It follows that ATA~x = ~0
and so ~x is in the null space of ATA.

(⇐) Suppose that ~x ∈ null(ATA), so that ATA~x = ~0. Multiply both sides
of this equation by ~xT :

ATA~x = ~0

~xTATA~x = ~xT

(1×n)
· ~0
(n×1)

(A~x)T (A~x) = 0

||A~x ||2 = 0

A~x = ~0

Therefore ~x is in the null space of A.
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Proof of Theorem 2: ATA is nonsingular if and only if the
columns of A form a L.I. set of a vectors

This theorem follows from Theorem 1 and the following two facts:

1 For any square matrix B, the matrix is invertible if and only if its null

space is trivial: null(B) =
{
~0
}
.

2 For any matrix A, The null space of A is trivial if and only if the
columns of A form a linearly independent set of vectors.
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Existence and Uniqueness Continued ...

Theorem (The Fundamental Regression Theorem)

Let A be the matrix associated with a linear regression
model. If the columns of A form a linearly independent
set of N × k vectors, then there exists a unique solution c

to the least squares problem. Where c is the column of
coefficients for the modeling function (polynomial, fourier,
etc.)

c = (ATA)−1AT~y and ŷ = Ac
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Existence and Uniqueness Continued ...

Theorem (Orthogonal Projection)

Let V be a vector space in Rn and suppose W is a
subspace of V with dimension less than n. If ~y ∈ V and
~y /∈ W , then there exists a unique ŷ ∈ W such that
~y − ŷ ⊥ W .

Theorem (Orthogonal ⇔ Shortest distance)

The orthogonal condition is equivalent to: If ~w is any
vector in W , then ||~y − ŷ || ≤ ||~y − ~w ||.
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Orthogonal Projection

ŷ ∈ W = span
([
~x1 ~x2 . . . ~xm

])
ŷ

~y ~y − ŷ

V

W
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Correlation and Goodness of Fit

The regression problem will almost always have a unique solution
since the x data will usually be distinct.

However, the least squares error is not a good measure of how well
the model approximates the dependent variable y . For example, we
can find a linear model to approximate data that is clearly not linear:

x

y
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Correlation and Goodness of Fit

A good way to see if the model is a good fit is to compute the
correlation coefficient r :

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2

Note that this expression could be interpreted as the cosine of an
angle by comparing the formula for r and the formula:

v ·w = ||v ||||w || cos(θ)
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While the angle shown below is not really the same angle as cos−1(r),
it is not unrelated and makes a reasonable interpretation.

Col(A) = span
([
~x ~1

])ŷ

~y ~y − ŷ

θ
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Comparing r with cos(θ)

Data Set r cos−1(r) cos(θ) θ

Beam Project 0.9953273 5.5◦ 0.999996 0.2◦

First Regression Slide 0.886456 27.6◦ 0.974923 12.9◦

Low r Value Slide 0.017442 89.3◦ 0.012781 89.0◦

Salmon Data (n=1940) 0.982955 10.6◦ 0.98317 10.5◦

Table: Comparing r with the cosine of the angle between ~y and ŷ .
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Differential Equations Group Project

Recall the beam equation:

d4y

dx4
=

w

EI

Students in a differential equations class measure deflections of a
flexible beam. Two cases: embedded both ends, embedded one end
and free on the other.

They use software such as Excel to create scatter-plot and include a
best fit 4th degree polynomial for each case.

Students differentiate the polynomial 4 times to recover (estimate)
the constant K = w

EI .

Next they compare the constants K obtained for the two different set
of boundary conditions. They should be close?
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Typical Graph Submitted by Students
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Sensitivity to Scale when using a Vandermonde matrix

When completing the DE student project, students were instructed to
measure in centimeters. (length of beam was about 200 cm,
deflections from 0 to about 10 cm).

When using centimeters, the coefficients for the best fit 4th degree
polymomial appeared to be inaccurate. In some cases yielding
negative values for K . The values obtained for K were extremely
small and susceptable to error.

When changing the data to meters by simply dividing all
measurements by 100, the accuracy of regression results was greatly
improved.
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Sensitivity to Scale Continued ...

Using the student data, the instructor created the matrices ATA and
used Matlab to estimate the condition number of the matrices.

When using the measurements in centimeters, the condition number
was very large:

cond(ATA) ≈ 1018

When using the measurements in meters, the condition number
improved:

cond(ATA) ≈ 105

It is known that computational error can result when the condition
number exceeds ≈ 1016.
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Chinook Juvenile Salmon:
Linear Model and Exponential Model
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Chinook Juvenile Salmon:
Power Model and Quadratic Model
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Tranformations

Desired nonlinear model Typical yi Transformation to linear model

Exponential yi = mebxi ln(yi ) = ln(m) + bxi
Power yi = AxB ln(yi ) = ln(A) + B ln(xi )

Table: Some common transformations
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Summary

Together with matrix software like MATLAB, Octave, Python,... the
linear algebra approach to regression is an effective/efficient way to
model data.

The ”general linear model” provides a framework for many types of
curve fitting scenarios.

The linear algebra approach gives a geometric view that is
conceptually ”pleasing”.

The linear algebra theorems can be generalized to more abstract
settings, e.g. Hilbert Spaces.

There is a rich amount of statistical analysis associated with linear
regression.
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The End

Thanks for Listening!
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