Linear Regression, Linearization, Linear Algebra and All That

Jim Fischer

Oregon Institute of Technology
jim.fischer@oit.edu

April 27, 2018

Chinook Juvenile Salmon

Length (mm)	Weight (g)
35	0.3
36	0.3
38	0.4
39	0.4
38	0.5
39	0.5
41	0.6
\vdots	\vdots

Table: Chinook Juvenile Salmon. Redwook Creek (CA)

Least Squares Linear Regression

- Find the best fit line to a collection of data $\left(x_{i}, y_{i}\right)$, and determine a measure of the strength of the linear relationship.

Least Squares Linear Regression

- Find the best fit line to a collection of data $\left(x_{i}, y_{i}\right)$, and determine a measure of the strength of the linear relationship.
- The equation of the line is:

$$
\hat{y}_{i}=m x_{i}+b
$$

We would like to determine the slope m and intercept b so that the total of the squared residuals is minimized.

Least Squares Linear Regression

- Find the best fit line to a collection of data $\left(x_{i}, y_{i}\right)$, and determine a measure of the strength of the linear relationship.
- The equation of the line is:

$$
\hat{y}_{i}=m x_{i}+b
$$

We would like to determine the slope m and intercept b so that the total of the squared residuals is minimized.

$$
\text { Minimize: } \quad E(m, b)=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

Linear Least Squares Regression

- Find m and b to minimize total least squares error:

$$
E(m, b)=\sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

Calculus Solution

- We compute the partial derivatives and set them equal to zero:

$$
\begin{aligned}
\frac{\partial E}{\partial m} & =-2 \sum_{i=1}^{N} x_{i}\left(\hat{y}_{i}-y_{i}\right)=0 \\
\frac{\partial E}{\partial b} & =-2 \sum_{i=1}^{N}\left(\hat{y}_{i}-y_{i}\right)=0
\end{aligned}
$$

- By factoring out the m and b and rearranging terms the system looks like:

$$
\begin{aligned}
m \sum x_{i}^{2}+b \sum x_{i} & =\sum x_{i} y_{i} \\
m \sum x_{i}+b \sum 1 & =\sum y_{i}
\end{aligned}
$$

- This linear system of equation can be solved, for example, using Cramer's rule:

$$
\begin{aligned}
m & =\frac{n \sum\left(x_{i} y_{i}\right)-\sum x_{i} \sum y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \\
b & =\frac{\sum x_{i}^{2} \sum y_{i}-\sum x_{i} \sum\left(x_{i} y_{i}\right)}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
\end{aligned}
$$

- The solution exists and is unique provided that

$$
n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2} \neq 0
$$

Calculus Solution Continued

Using the 2nd Derivative test for functions of two variables it is straight-forward to show that the unique solution corresponds to an absolute minimum

- $\frac{\partial^{2} E}{\partial m^{2}}=2 \sum x_{i}^{2}>0$ and $D(m, b)=4\left(n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}\right)>0$ implies the solution is a local minimum.
- E is continuous over R^{2} and has one critical point, therefore the solution is an absolute minimum.

Linear Algebra Approach

- If the data $\left(x_{i}, y_{i}\right)$ lie perfectly on a line, then:

$$
\begin{aligned}
y_{1} & =m x_{1}+b \\
y_{2} & =m x_{2}+b \\
& \vdots \\
y_{n} & =m x_{n}+b
\end{aligned} \quad\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]
$$

Linear Algebra Approach

- If the data $\left(x_{i}, y_{i}\right)$ lie perfectly on a line, then:

$$
\begin{aligned}
y_{1} & =m x_{1}+b \\
y_{2} & =m x_{2}+b \\
& \vdots \\
y_{n} & =m x_{n}+b
\end{aligned} \quad\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]
$$

- Or more simply as:

$$
\overrightarrow{\boldsymbol{y}}=A \boldsymbol{c} .
$$

Linear Algebra Approach

- If the data $\left(x_{i}, y_{i}\right)$ lie perfectly on a line, then:

$$
\begin{aligned}
y_{1} & =m x_{1}+b \\
y_{2} & =m x_{2}+b \\
& \vdots \\
y_{n} & =m x_{n}+b
\end{aligned} \quad\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]
$$

- Or more simply as:

$$
\overrightarrow{\boldsymbol{y}}=A \boldsymbol{c} .
$$

- Note that $\overrightarrow{\boldsymbol{y}}$ is a vector in the column space of A.

Linear Algebra Approach Continued ...

- Typically the data $\left(x_{i}, y_{i}\right)$ does not lie perfectly on a line, and so we seek a solution $\hat{\boldsymbol{y}}$ (a vector in the column space of A) that is "closest" in some sense.

Linear Algebra Approach Continued ...

- Typically the data $\left(x_{i}, y_{i}\right)$ does not lie perfectly on a line, and so we seek a solution $\hat{\boldsymbol{y}}$ (a vector in the column space of A) that is "closest" in some sense.
- When we choose "closest" to mean the least total squares error, then the solution turns out to be the orthogonal projection of \boldsymbol{y} onto the column space of A where A is the matrix:

$$
A=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]
$$

A Geometric Viewpoint

$$
\hat{\boldsymbol{y}} \in \operatorname{Col}(A)=\operatorname{span}\left(\left[\begin{array}{ll}
\vec{x} & \overrightarrow{\mathbf{1}}
\end{array}\right]\right)
$$

Linear Algebra Approach Continued

- Since $\hat{\boldsymbol{y}} \in \operatorname{Col}(A), \hat{\boldsymbol{y}}$ must be of the form $\hat{\boldsymbol{y}}=A \boldsymbol{c}$.

Linear Algebra Approach Continued ...

- Since $\hat{\boldsymbol{y}} \in \operatorname{Col}(A), \hat{\boldsymbol{y}}$ must be of the form $\hat{\boldsymbol{y}}=A \boldsymbol{c}$.
- Finding the vector $\hat{\boldsymbol{y}}$ such that $\overrightarrow{\boldsymbol{y}}-\hat{\boldsymbol{y}}$ is orthogonal to the column space of A boils down to solving the "normal" equation(s):

$$
\begin{aligned}
A^{T}(\overrightarrow{\boldsymbol{y}}-\hat{\boldsymbol{y}}) & =\overrightarrow{\mathbf{0}} \\
A^{T} A \boldsymbol{c} & =A^{T} \overrightarrow{\boldsymbol{y}}
\end{aligned}
$$

Linear Algebra Approach Continued ...

- Since $\hat{\boldsymbol{y}} \in \operatorname{Col}(A), \hat{\boldsymbol{y}}$ must be of the form $\hat{\boldsymbol{y}}=A \boldsymbol{c}$.
- Finding the vector $\hat{\boldsymbol{y}}$ such that $\overrightarrow{\boldsymbol{y}}-\hat{\boldsymbol{y}}$ is orthogonal to the column space of A boils down to solving the "normal" equation(s):

$$
\begin{aligned}
A^{T}(\overrightarrow{\boldsymbol{y}}-\hat{\boldsymbol{y}}) & =\overrightarrow{\mathbf{0}} \\
A^{T} A \boldsymbol{c} & =A^{T} \overrightarrow{\boldsymbol{y}}
\end{aligned}
$$

Linear Algebra Approach Continued ...

- Since $\hat{\boldsymbol{y}} \in \operatorname{Col}(A), \hat{\boldsymbol{y}}$ must be of the form $\hat{\boldsymbol{y}}=A \boldsymbol{c}$.
- Finding the vector $\hat{\boldsymbol{y}}$ such that $\overrightarrow{\boldsymbol{y}}-\hat{\boldsymbol{y}}$ is orthogonal to the column space of A boils down to solving the "normal" equation(s):

$$
\begin{aligned}
A^{T}(\overrightarrow{\boldsymbol{y}}-\hat{\boldsymbol{y}}) & =\overrightarrow{\mathbf{0}} \\
A^{T} A \boldsymbol{c} & =A^{T} \overrightarrow{\boldsymbol{y}}
\end{aligned}
$$

- Provided $A^{T} A$ is invertible, the solution is given by:

$$
\boldsymbol{c}=\left(A^{T} A\right)^{-1} A^{T} \overrightarrow{\boldsymbol{y}}
$$

Other Regression Models: Polynomials

- The Linear Algebra approach nicely lends itself to other models :

Other Regression Models: Polynomials

- The Linear Algebra approach nicely lends itself to other models :
- For example, to find the best (least squares) fit parabola, just change the matrix A by adding a column of squared values:

$$
\hat{\boldsymbol{y}}=A \boldsymbol{c}=\left[\begin{array}{ccc}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
\vdots & \vdots & \\
x_{N}^{2} & x_{N} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

Other Regression Models: Polynomials

- The Linear Algebra approach nicely lends itself to other models :
- For example, to find the best (least squares) fit parabola, just change the matrix A by adding a column of squared values:

$$
\hat{\boldsymbol{y}}=A \boldsymbol{c}=\left[\begin{array}{ccc}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
\vdots & \vdots & \\
x_{N}^{2} & x_{N} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

- To find the best fit polynomial, simply add more columns. To fit a k th degree polynomial, the matrix A would have shape $N \times(k+1)$

Other Regression Models: Fourier Series

- To fit a finite fourier-sine series :

$$
A=\left[\begin{array}{cccc}
\sin \left(x_{1}\right) & \sin \left(2 x_{1}\right) & +\cdots+ & \sin \left(k x_{1}\right) \\
\sin \left(x_{2}\right) & \sin \left(2 x_{2}\right) & +\cdots+ & \sin \left(k x_{2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\sin \left(x_{N}\right) & \sin \left(2 x_{N}\right) & +\cdots+ & \sin \left(k x_{N}\right)
\end{array}\right]
$$

Other Regression Models

- In any case where the modeling function has coefficients that appear linearly, we can use the matrix setup.

Other Regression Models

- In any case where the modeling function has coefficients that appear linearly, we can use the matrix setup.
- The normal equations and the solution remain the same:

$$
\begin{aligned}
A^{T} A \boldsymbol{c} & =A^{T} \overrightarrow{\boldsymbol{y}} \\
\boldsymbol{c} & =\left(A^{T} A\right)^{-1} A^{T} \overrightarrow{\boldsymbol{y}}
\end{aligned}
$$

Other Regression Models

- In any case where the modeling function has coefficients that appear linearly, we can use the matrix setup.
- The normal equations and the solution remain the same:

$$
\begin{aligned}
A^{T} A c & =A^{T} \overrightarrow{\boldsymbol{y}} \\
\boldsymbol{c} & =\left(A^{T} A\right)^{-1} A^{T} \overrightarrow{\boldsymbol{y}}
\end{aligned}
$$

- The vector of estimated values $\hat{\boldsymbol{y}}$ is given by:

$$
\hat{y}=A c
$$

Existence and Uniqueness of the Solution

A Pair of Nice Results from Linear Algebra:

Theorem (1)

For any matrix A, the null space of A is equal to the null space of $A^{T} A$.

Existence and Uniqueness of the Solution

A Pair of Nice Results from Linear Algebra:

Theorem (1)

For any matrix A, the null space of A is equal to the null space of $A^{T} A$.

Theorem (2)

For any matrix A, the matrix $A^{T} A$ is invertible (nonsingular) if and only if the columns of A form a linearly independent set of vectors.

Proof of Theorem 1: $\operatorname{null}(A)=\operatorname{null}\left(A^{\top} A\right)$

(\Rightarrow) Suppose that $\vec{x} \in \operatorname{null}(A)$, so that $A \vec{x}=\overrightarrow{\mathbf{0}}$. It follows that $A^{T} A \vec{x}=\overrightarrow{\mathbf{0}}$ and so \vec{x} is in the null space of $A^{T} A$.
(\Leftarrow) Suppose that $\overrightarrow{\boldsymbol{x}} \in \operatorname{null}\left(A^{\top} A\right)$, so that $A^{T} A \vec{x}=\overrightarrow{\mathbf{0}}$. Multiply both sides of this equation by $\overrightarrow{\boldsymbol{x}}^{\top}$:

$$
\begin{aligned}
A^{T} A \vec{x} & =\overrightarrow{0} \\
\vec{x}^{T} A^{T} A \vec{x} & =\underset{(1 \times n)}{\vec{x}^{T}} \cdot \underset{(n \times 1)}{\overrightarrow{0}} \\
(A \vec{x})^{T}(A \vec{x}) & =0 \\
\|A \vec{x}\|^{2} & =0 \\
A \vec{x} & =\overrightarrow{0}
\end{aligned}
$$

Therefore \vec{x} is in the null space of A.

Proof of Theorem 2: $A^{T} A$ is nonsingular if and only if the columns of A form a L.I. set of a vectors

This theorem follows from Theorem 1 and the following two facts:
(1) For any square matrix B, the matrix is invertible if and only if its null space is trivial: $\operatorname{null}(B)=\{\overrightarrow{\mathbf{0}}\}$.
(2) For any matrix A, The null space of A is trivial if and only if the columns of A form a linearly independent set of vectors.

Existence and Uniqueness Continued ...

Theorem (The Fundamental Regression Theorem)

Let A be the matrix associated with a linear regression model. If the columns of A form a linearly independent set of $N \times k$ vectors, then there exists a unique solution c to the least squares problem. Where \boldsymbol{c} is the column of coefficients for the modeling function (polynomial, fourier, etc.)

$$
c=\left(A^{T} A\right)^{-1} A^{T} \vec{y} \text { and } \hat{y}=A c
$$

Existence and Uniqueness Continued ...

Theorem (Orthogonal Projection)

Let V be a vector space in \mathbb{R}^{n} and suppose W is a subspace of V with dimension less than n. If $\overrightarrow{\boldsymbol{y}} \in V$ and $\vec{y} \notin W$, then there exists a unique $\hat{\boldsymbol{y}} \in W$ such that $\overrightarrow{\boldsymbol{y}}-\hat{\boldsymbol{y}} \perp W$.

Existence and Uniqueness Continued ...

Theorem (Orthogonal Projection)

Let V be a vector space in \mathbb{R}^{n} and suppose W is a subspace of V with dimension less than n. If $\overrightarrow{\boldsymbol{y}} \in V$ and $\vec{y} \notin W$, then there exists a unique $\hat{\boldsymbol{y}} \in W$ such that $\overrightarrow{\boldsymbol{y}}-\hat{\boldsymbol{y}} \perp W$.

Theorem (Orthogonal \Leftrightarrow Shortest distance)

The orthogonal condition is equivalent to: If \vec{w} is any vector in W, then $\|\vec{y}-\hat{\boldsymbol{y}}\| \leq\|\overrightarrow{\boldsymbol{y}}-\overrightarrow{\boldsymbol{w}}\|$.

Orthogonal Projection

V

$$
\hat{\boldsymbol{y}} \in W=\operatorname{span}\left(\left[\begin{array}{llll}
\overrightarrow{x_{\mathbf{1}}} & \overrightarrow{x_{2}} & \ldots & \overrightarrow{x_{\boldsymbol{m}}}
\end{array}\right]\right)
$$

Correlation and Goodness of Fit

- The regression problem will almost always have a unique solution since the x data will usually be distinct.

Correlation and Goodness of Fit

- The regression problem will almost always have a unique solution since the x data will usually be distinct.
- However, the least squares error is not a good measure of how well the model approximates the dependent variable y. For example, we can find a linear model to approximate data that is clearly not linear:

Correlation and Goodness of Fit

- A good way to see if the model is a good fit is to compute the correlation coefficient r :

$$
r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum\left(y_{i}-\bar{y}\right)^{2}}}
$$

Correlation and Goodness of Fit

- A good way to see if the model is a good fit is to compute the correlation coefficient r :

$$
r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum\left(y_{i}-\bar{y}\right)^{2}}}
$$

- Note that this expression could be interpreted as the cosine of an angle by comparing the formula for r and the formula:

$$
\boldsymbol{v} \cdot \boldsymbol{w}=\|\boldsymbol{v}\|\|\boldsymbol{w}\| \cos (\theta)
$$

- While the angle shown below is not really the same angle as $\cos ^{-1}(r)$, it is not unrelated and makes a reasonable interpretation.

Comparing r with $\cos (\theta)$

Data Set	r	$\cos ^{-1}(r)$	$\cos (\theta)$	θ
Beam Project	0.9953273	5.5°	0.999996	0.2°
First Regression Slide	0.886456	27.6°	0.974923	12.9°
Low r Value Slide	0.017442	89.3°	0.012781	89.0°
Salmon Data $(\mathrm{n}=1940)$	0.982955	10.6°	0.98317	$10.5 \circ$

Table: Comparing r with the cosine of the angle between $\overrightarrow{\boldsymbol{y}}$ and $\hat{\boldsymbol{y}}$.

Differential Equations Group Project

- Recall the beam equation:

$$
\frac{d^{4} y}{d x^{4}}=\frac{w}{E l}
$$

- Students in a differential equations class measure deflections of a flexible beam. Two cases: embedded both ends, embedded one end and free on the other.
- They use software such as Excel to create scatter-plot and include a best fit 4th degree polynomial for each case.
- Students differentiate the polynomial 4 times to recover (estimate) the constant $K=\frac{w}{E I}$.
- Next they compare the constants K obtained for the two different set of boundary conditions. They should be close?

Typical Graph Submitted by Students

Comparing Data - Best Fit Poly - Solution using K from Embedded Embedded

Sensitivity to Scale when using a Vandermonde matrix

- When completing the DE student project, students were instructed to measure in centimeters. (length of beam was about 200 cm , deflections from 0 to about 10 cm).

Sensitivity to Scale when using a Vandermonde matrix

- When completing the DE student project, students were instructed to measure in centimeters. (length of beam was about 200 cm , deflections from 0 to about 10 cm).
- When using centimeters, the coefficients for the best fit 4th degree polymomial appeared to be inaccurate. In some cases yielding negative values for K. The values obtained for K were extremely small and susceptable to error.

Sensitivity to Scale when using a Vandermonde matrix

- When completing the DE student project, students were instructed to measure in centimeters. (length of beam was about 200 cm , deflections from 0 to about 10 cm).
- When using centimeters, the coefficients for the best fit 4th degree polymomial appeared to be inaccurate. In some cases yielding negative values for K. The values obtained for K were extremely small and susceptable to error.
- When changing the data to meters by simply dividing all measurements by 100, the accuracy of regression results was greatly improved.

Sensitivity to Scale Continued ...

- Using the student data, the instructor created the matrices $A^{T} A$ and used Matlab to estimate the condition number of the matrices.

Sensitivity to Scale Continued ...

- Using the student data, the instructor created the matrices $A^{T} A$ and used Matlab to estimate the condition number of the matrices.
- When using the measurements in centimeters, the condition number was very large:

$$
\operatorname{cond}\left(A^{T} A\right) \approx 10^{18}
$$

Sensitivity to Scale Continued ...

- Using the student data, the instructor created the matrices $A^{T} A$ and used Matlab to estimate the condition number of the matrices.
- When using the measurements in centimeters, the condition number was very large:

$$
\operatorname{cond}\left(A^{T} A\right) \approx 10^{18}
$$

- When using the measurements in meters, the condition number improved:

$$
\operatorname{cond}\left(A^{T} A\right) \approx 10^{5}
$$

Sensitivity to Scale Continued ...

- Using the student data, the instructor created the matrices $A^{T} A$ and used Matlab to estimate the condition number of the matrices.
- When using the measurements in centimeters, the condition number was very large:

$$
\operatorname{cond}\left(A^{T} A\right) \approx 10^{18}
$$

- When using the measurements in meters, the condition number improved:

$$
\operatorname{cond}\left(A^{T} A\right) \approx 10^{5}
$$

- It is known that computational error can result when the condition number exceeds $\approx 10^{16}$.

Chinook Juvenile Salmon: Linear Model and Exponential Model

Juvenile Chinookn Salmon
Length (mm) vs. Weight (g)
$y=0.0926 x-3.2064$
$R^{2}=0.9573$

Juvenile Chinookn Salmon
Length (mm) vs. Weight (g)

$$
\begin{gathered}
y=0.0356 e^{0.0688 x} \\
R^{2}=0.9664
\end{gathered}
$$

Chinook Juvenile Salmon:
 Power Model and Quadratic Model

$$
R^{2}=0.9792
$$

Juvenile Chinookn Salmon
Length (mm) vs. Weight (g)

$$
\begin{gathered}
y=0.0017 x^{2}-0.0869 x+1.2558 \\
R^{2}=0.9869
\end{gathered}
$$

Tranformations

Desired nonlinear model	Typical y_{i}	Transformation to linear model
Exponential	$y_{i}=m e^{b x_{i}}$	$\ln \left(y_{i}\right)=\ln (m)+b x_{i}$
Power	$y_{i}=A x^{B}$	$\ln \left(y_{i}\right)=\ln (A)+B \ln \left(x_{i}\right)$

Table: Some common transformations

Summary

- Together with matrix software like MATLAB, Octave, Python,... the linear algebra approach to regression is an effective/efficient way to model data.
- The "general linear model" provides a framework for many types of curve fitting scenarios.
- The linear algebra approach gives a geometric view that is conceptually "pleasing".
- The linear algebra theorems can be generalized to more abstract settings, e.g. Hilbert Spaces.
- There is a rich amount of statistical analysis associated with linear regression.

References

1 Fogarty T, Waterman G., Deflection of a Horizontal Beam, SIMIODE, 2016

2 Michael Sparkman, Biologist, Calif. Dept. of Fish and Wildlife,
3 Professor Randall Paul, OIT Mathematics Dept.
4 Wikipedia: General Linear Model/ Generalized Linear Model

The End

Thanks for Listening!

