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1. Extended Japanese Sangaku Theorem from 1800

2. 1972 R.P. Stanley’s theorem on partitions

3. Average number of ways integers 0 thru (n – 1) can be expressed as the sum of two 
(ordered) integral squares (Gauss ~1800)

Sources:

“Mathematical Gems III”, “Ingenuity in Mathematics” by Ross Honsberger

“Advanced Euclidean Geometry” by R.A. Johnson (1961, orig. 1929)

You can present this to your students… Beautiful high school math here 



Please feel free to ask questions at any time 



1. 1800 Japanese Theorem

Take any n sided convex polygon inscribed in a circle and triangulate it 
using any one vertex. Inscribe circles in each of the (n – 2) triangles.

The sum of the radii of the inscribed circles is 
a constant – regardless of which vertex is 
chosen!



1800 Japanese Theorem (extended)

Take any n sided convex polygon inscribed in a circle and triangulate it 
using one or more vertices. Inscribe circles in each of the (n – 2) 
triangles.

The sum of the radii of the inscribed circles is 
a constant --- regardless of which 
triangulation is chosen!



Example:                                                                
6 sided polygon results in 4 triangles 

Original Triangulation Method                                  “Extended” Triangulation

Sum of the radii is a constant regardless of the Triangulation



Sangaku Mathematics (Wikipedia)

Sangaku or San Gaku (算額; lit. translation: calculation tablet) are 
Japanese geometrical problems or theorems on wooden tablets which were placed 
as offerings at Shinto shrines or Buddhist temples during the Edo period (1603 –
1868) by members of all social classes.

• The Sangaku were painted in color on wooden tablets (ema) and hung in the precincts of Buddhist temples and 
Shinto shrines as offerings to the kami and buddhas, as challenges to the congregants...

• Fujita Kagen (1765–1821), a Japanese mathematician of prominence, published the first collection 
of sangaku problems, his Shimpeki Sampo (Mathematical problems Suspended from the Temple) in 1790, and in 
1806 a sequel, the Zoku Shimpeki Sampo.

• During this period Japan applied strict regulations to commerce and foreign relations for western countries so the 
tablets were created using Japanese mathematics, developed in parallel to western mathematics. For example, the 
connection between an integral and its derivative (the fundamental theorem of calculus) was unknown, so Sangaku
problems on areas and volumes were solved by expansions in infinite series and term-by-term calculation.

https://en.wikipedia.org/wiki/Euclidean_geometry
https://en.wikipedia.org/wiki/Shinto_shrine
https://en.wikipedia.org/wiki/Buddhist_temples_in_Japan
https://en.wikipedia.org/wiki/Edo_period
https://en.wikipedia.org/wiki/Ema_(Shinto)
https://en.wikipedia.org/w/index.php?title=Fujita_Kagen&action=edit&redlink=1
https://en.wikipedia.org/wiki/Japan
https://en.wikipedia.org/wiki/Japanese_mathematics
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Infinite_series


First some geometry background.

This should bring back some pleasant 
memories for some of us. 



1. An iff property of cyclic quadrilaterals

A

B

C
D

A + C = B + D = 180◦

https://polymathematics.typepad.com/polymath/cyclic-quadrilaterals.html

https://polymathematics.typepad.com/polymath/cyclic-quadrilaterals.html


2. Ptolemy’s theorem: Cyclic quadrilaterals

ac + bd = ef

a

b

c

d

e

f

https://www.cut-the-knot.org/proofs/ptolemy.shtml

https://www.cut-the-knot.org/proofs/ptolemy.shtml


3. Area of the triangle
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4. Area of the triangle                      
Perpendicular bisector outside the triangle

Area =  𝛼
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We also need the beautiful theorem by 
Carnot before we get to our extended 
Japanese Theorem.



5. L.N.M Carnot’s (1753-1823) Theorem

Statement:

In any triangle ABC, the sum of the signed distances 
from the circumcenter O to the sides is R + r 

R = circumradius

r = inradius

https://demonstrations.wolfram.com/CarnotsTheorem/



5. Carnot’s theorem: 
Signed sum of perpendicular bisectors 

Positive distance                                   Negative distance 

(if completely outside the triangle)

𝛼1 + 𝛽1 + 𝛾1 = R + r1 𝛼2 + 𝛽2 – 𝛾2 = R + r2

O O𝛼1
𝛽1

𝛾1

𝛼2

𝛽2𝛾2



Beautiful Proof of Carnot’s theorem: 
Positive Distances  

Perpendicular bisectors Angular bisectors 
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Carnot’s theorem (Negative distance)
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Back to our Japanese theorem (finally!)        
Proof that the sum of  the radii is a constant
Every triangle in any triangulation has the same circumcircle (the outer 
circle) with radius R

Let the radii of the inscribed circles be r1, r2, r3, …

Let the signed distances from the center of the circumcircle to sides of 
the inscribed triangle i be 𝛼i, 𝛽i, and 𝛾i

R + ri = 𝛼i + 𝛽i ± 𝛾i for each of the inscribed triangles



Proof: Continued

R + ri = 𝛼i + 𝛽i +  𝛾i for each of the (n – 2) inscribed triangles

ri = 𝛼i + 𝛽i +  𝛾i – R

S = σ 𝑟𝑖 = σ (𝛼i + 𝛽i +  𝛾i) – (n – 2)R

Need to show that S′ = σ (𝛼i + 𝛽i + 𝛾i) is a constant regardless of 
the triangulation.



Perpendicular bisector on a diagonal of the 
triangulation

The bisector on the diagonal AD is inside                          
∆ ADE and hence +ve.

The same bisector on AD is                                          
outside ∆ ABD and hence –ve.

So these will cancel each other out.
A

D

B
E

F



Perpendicular bisectors on the diagonals of 
the triangulation

The bisectors on the diagonals                      
occur in pairs and will                                      
pairwise cancel each other.                             
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The perpendicular bisectors on the edges 
of the polygon

The bisectors on the edges of the polygon             
(always +ve distances) occur once and will be  
preserved in the sum.

Triangulations do not affect the                               
bisectors to the edges of the polygon.



Add all the perpendicular bisectors

The bisectors of the diagonals of the triangulation
occur in pairs and cancel each other.                             

The bisectors to the outer edges (positive distances)
occur once and are preserved by the sum.

Hence the sum will be a constant.  QED!!



1972 R.P. Stanley’s theorem on 
partitions of integers



Partitions are unordered parts of an 
integer that add up to the number
1 = 1                                                                                      p(1) = 1
2 = 1 + 1 = 2                                                                         p(2) = 2
3 = 1 + 1 + 1 = 2 + 1 = 3                                                      p(3) = 3  
4 = 1 + 1 + 1 + 1 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 4                p(4) = 5
This number grows pretty rapidly and is denoted by p(n)
p(n) values for n = 0, 1, 2, …
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 
627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, … 
(sequence A000041 in the OEIS)

Rich field of study in Number Theory – S. Ramanujan

https://oeis.org/A000041
https://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences


2. 1972 R.P. Stanley’s theorem

The total number of 1’s among all unordered partitions of a positive 
integer is equal to the sum of the numbers of distinct parts of those 
partitions.

A theorem discovered after I was born and one that I can understand 

Unlikely there are more than a handful of these, if any 



Example of Stanley’s Thm. (note the order!)
p (5) = 7                                                  distinct items    # of distinct items

5 = 1 + 1 + 1 + 1 + 1                                         1                        1

= 1 + 1 + 1 + 2                                                1, 2                   2

= 1 + 1 + 3                                                      1, 3                    2

= 1 + 2 + 2                                                      1, 2                    2

= 1 + 4                                                             1, 4                   2

= 2 + 3                                                             2, 3                   2

= 5                                                                    5                       1

Number of 1’s = 12                                     Total number of distincts = 12



History from Wolfram Math

The general result was discovered by R. P. Stanley in 1972 and 
submitted to the "Problems and Solutions" section of the American 
Mathematical Monthly, where it was rejected with the comment "A bit 
on the easy side, and using only a standard argument," presumably 
because the editors did not understand the actual statement and 
solution of the problem



Will motivate the proof using our p(5) example



Proof: Arrange the partitions in a                  
non decreasing order in a table 

Partition # col 1 col 2 col 3 col 4 col 5

1. 1 1 1 1 1

2. 1 1 1 2

3. 1 1 3

4. 1 2 2

5. 1 4

6. 2 3

7. 5

# of 1’s/col. 5 3 2 1 1



Let’s focus on the columns of this table.
We will count how many 1’s are in each column.



# of 1’s in column 3 = p (5 – 3) = p(2)

Partition # col 1 col 2
Focus 

on col. k 
= 3

col 3 col 4
p (5 - 3) 
= p (2) 
= 2

1. 1 1 1 1 1 1 + 1 = 2

2. 1 1 1 2 2       = 2

3. 1 1 3

4. 1 2 2

5. 1 4

6. 2 3

7. 5

# of 1’s/col 5 3 2 1 1

Numbers in each red box add up to k.
Note: # of 1’s in column 5 = 1 = p (5 – 5) = p (0)



# of 1’s in column 2 = 3 = p (5 – 2) = p(3)

Partition # col 1
Focus on 
col. k = 2 col 3 col  4 col 5

p (5 - 2)        
=  p (3) 
= 3

1. 1 1 1 1 1 1 + 1 + 1 = 3

2. 1 1 1 2 1 + 2 = 3

3. 1 1 3 3       = 3

4. 1 2 2

5. 1 4

6. 2 3

7. 5

# of 1’s/col. 5 3 2 1 1

Generalizing, we see that number of 1’s in column k = p(n – k)



Adding up the 1’s in all the columns

From the previous slides, number of 1’s in column k = p(n – k) 

Total number of 1’s in all columns = σk=1
n p(n − k) (1)

Next, we count the number of distinct parts 
in each partition.



Number of distinct parts in each partition: 
Let’s focus on some part, say 2.
(Ignore duplicates in the same row)

Partition # col 1 col 2 col 3 col 4 col 5
p (5 - 2)  =  
p (3) = 3

1. 1 1 1 1 1

2. 1 1 1 2 1 + 1 + 1 = 3

3. 1 1 3

4. 1 2 2 1 + 2 = 3

5. 1 4

6. 2 3 3 = 3

7. 5

# of 1’s/col. 5 3 2 1 1

Thus 2 occurs as a distinct part in p (5 – 2) rows 



Similarly, 
number of rows containing 1 = p (5 – 1) = p(4)

Partition # col 1 col 2 col 3 col 4 col 5

p (5 - 1)       
=  p (4) 
= 5

1. 1 1 1 1 1 1 + 1 + 1 + 1 = 4

2. 1 1 1 2 1 + 1 + 2        = 4

3. 1 1 3 1 + 3              = 4

4. 1 2 2 2 + 2              = 4

5. 1 4 4                     = 4

6. 2 3

7. 5

# of 
1’s/col.

5 3 2 1 1

Thus 1 occurs as a distinct part in p (5 – 1) rows 



Conclusion!

Number of rows containing k = p (n – k)
Hence number of distinct elements in all rows = σk=1

n p(n − k)

= Total number of 1’s in all columns  

Observation: Proof is mesmerizingly simple! (Once you see it)

A comment in the “Math Gems III” reads: “This argument was derived 
from independent proofs by two outstanding mathematicians E.W. 
Dijkstra and Prof. K.A. Post”.

Why did this need such “heavy hitters”?



A Partition Problem for your students!

The number of partitions of an integer n in which all parts are odd 

equals

the number of partitions of n in which all parts are distinct.

5 = 1 + 1 + 1 + 1 + 1             all odd                             

= 1 + 1 + 1 + 2                                                

= 1 + 1 + 3                         all odd                              

= 1 + 2 + 2                                                      

= 1 + 4                                                             all parts distinct

= 2 + 3                                                             all parts distinct

= 5                                      all odd                            all parts distinct



3. Sum of two squares

Average number of ways integers 0 thru (n – 1) can be 
expressed as the sum of two integral squares = ?

Any guesses? 

If you already know the answer, silence please 



We start with the function r(n)

r (n) = number of ways any non negative integer n can be expressed as the 
(ordered) sum of two integral squares

r (5) = 8  

Ordered Pairs:

5 = (+1)2 + (+2)2 = (+2)2 + (+1)2 (+1,+2), (+2, +1)    Q1,Q1

= (-1)2 + (+2)2 = (+2)2 + (-1)2 (-1,+2), (+2, -1)     Q2,Q4

= (+1)2 + (-2)2 = (-2)2 + (+1)2 (+1,-2), (-2, +1)      Q4,Q2

= (-1)2 + (-2)2 = (-2)2 + (-1)2 (-1,-2), (-2, -1)      Q3,Q3           

2 pairs in each quadrant



Behavior of r(n) is erratic!

r (0) = 1, r(1) = 4, r(2) = 4, r(3) = 0, r(4) = 4; r(5) = 8, r(7) = 0, r(12) = 0

Clearly r(4n+3) = 0; 3, 7, 11 …

r((4n+3)2m) = 0, m ≥ 0; Why??? 6, 14, 22, …

How high can r(n) go?  The sky is the limit!  



Why is there no upper bound?
r(p = 4n+1) = 8 (from Number Theory)
r(pq) = 16; r(pqs) = 32 and so on (q, s … 4n+1 primes)

5 = 12 + 22 ; 13 = 22 + 32; 17 = 42 + 12

65 = 5 · 13 = 42 + 72 = 12 + 82

1105 = 5 · 13 · 17 = 42 + 332 = 92 + 322 = 122 + 312 = 232 + 242

Let p, q = different 4n+1 primes; p = a2 + b2 and q = c2 + d2

p = (a + ib)(a – ib) and q = (c + id)(c – id)

pq = (a + ib)(c+id) (a – ib)(c – id) = (a + ib)(c – id) (a – ib)(c + id) 

!Conjugates!



Since r(n) is highly irregular, we look at its 
average

The average is surprisingly well behaved!

Consider  
r(0) + r(1) + r(2) + … + r (z – 1)

z
=

R(z)
z

We now study     lim
z→ ∞

R(z)
z

. This limit exists!! 

And the proof (Gauss, ~1800, 23 years old) is easy to follow 

Surprised that it took someone of Gauss’s caliber to solve this…



Proof

Consider the circle C z : x2 + y2 = z

A lattice point (a, b) has integer coordinates a and b

Every lattice point inside the circle satisfies a2 + b2 < z

Also a2 + b2 = n < z is an integer

Every lattice point inside the circle contributes 1 to R(z) as it is a pair 
counted by some r(n), n < z.

Conversely, any point counted by R(z) is a lattice point

Number of lattice points inside C z = R(z)



How many lattice points are inside C z ?

Consider any lattice point (a, b) inside the circle

Draw a red square with a side length of 1 (a unit square)

(a,b)

(a,b+1)

(a,b-1)

(a+1,b)(a-1,b) (
(a,b)



Draw unit red squares around all lattice 
points inside the circle
Some of the red squares 
are sticking out of the 
circle.

Some parts of the 
circle are empty.

Area of red region
= number of lattice points

inside the circle 

= R(z)!!
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•
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• • •

•

•

• •

•



Area of red region lies between the areas of 
the two brown circles

½ diagonal length of                                                       OQ ≥ 𝑧; RQ ≤ 
1

2

unit square = 
1

2
OR + RQ ≥ OQ  (∆ inequality)

OR ≥ OQ – RQ ≥ 𝑧 −
1

2

Radius of inner
brown circle 

= z −
1

2
OP < 𝑧; PB ≤ 

1

2

OB ≤ OP + PB < z +
1

2
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1
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As z gets larger… Area of red region gets closer 
to the area of the circle C z = π z

Area  of C z −
1

2
≤ Area of Red Region = R(z) ≤ Area  of C z +

1

2

π 𝑧 +
1

2
− 2z ≤ R z ≤ π 𝑧 +

1

2
+ 2z

π 1 +
1

2𝑧
−

2

z
≤

R z

𝑧
≤ π 1 +

1

2𝑧
+

2

z
(Squeeze theorem!)

lim
z→ ∞

R(z)
z

=  π 



How fast do we get to 𝜋?

z R(z)/z Unordered in Q1 only

10 2.9 0.7

102 3.05 0.47

103 3.133 0.419

104 3.1397 0.4100

105 3.14173 0.39542

106 3.141521 0.393544

107 3.1415993 0.3929699

108 3.14159017 0.39278413

109 3.141592369 0.392726038            
(*8 = 3.1418)

Cost of gas at Costco the other day = $3.149



A simple surprise for you! 
Add the numbers of each color

3

29

15

7

9

11

51

13

17

19

27

25

23

21



3

29

15

7

9

11

51

13

17

19

27

25

23

21

1 8 27 64 125      Total

Very 
“Cubicle”!!



???s

Thank you 


