A Semi-Frivolous Attempt to Mathematize Grade Adjustments

Mike Price

April 22, 2022

The Setup

"Use the graph to explain why wearing a seatbelt is important for the people in a car when they are involved in a collision."

The Setup

"Use the graph to explain why wearing a seatbelt is important for the people in a car when they are involved in a collision."

The Setup

"Use the graph to explain why wearing a seatbelt is important for the people in a car when they are involved in a collision."

"Because otherwise the eye of Sauron will be upon=you.".

The Setup

Your students have just done poorly on an assessment.

The Setup

Your students have just done poorly on an assessment.

Put yourself in the mindset (if you aren't already) of an individual looking for the grade adjustment that best fits the type of change they'd like to see in student scores.

The Setup

Your students have just done poorly on an assessment.

Put yourself in the mindset (if you aren't already) of an individual looking for the grade adjustment that best fits the type of change they'd like to see in student scores.

On occasion, we may have bumped up students scores to compensate for this issue.

The Setup

Your students have just done poorly on an assessment.

Put yourself in the mindset (if you aren't already) of an individual looking for the grade adjustment that best fits the type of change they'd like to see in student scores.

On occasion, we may have bumped up students scores to compensate for this issue. Is a vertical shift really the best mathematical offering on tap?

The Setup

Your students have just done poorly on an assessment.

Put yourself in the mindset (if you aren't already) of an individual looking for the grade adjustment that best fits the type of change they'd like to see in student scores.

On occasion, we may have bumped up students scores to compensate for this issue. Is a vertical shift really the best mathematical offering on tap? Let's explore!

A Basic Definition

Def A basic grading adjustment is a function $G:[0,1] \rightarrow[0,1]$.

A Basic Definition

Def A basic grading adjustment is a function $G:[0,1] \rightarrow[0,1]$. Some notes:

A Basic Definition

Def A basic grading adjustment is a function $G:[0,1] \rightarrow[0,1]$. Some notes:

- The identity grading adjustment $I(r)$ is simply a decision not to adjust grades at all!

A Basic Definition

Def A basic grading adjustment is a function $G:[0,1] \rightarrow[0,1]$. Some notes:

- The identity grading adjustment $I(r)$ is simply a decision not to adjust grades at all!
- The basic mapping assumes no extra credit on the original test, and no way to get an adjusted score above 100%.

A Basic Definition

Def A basic grading adjustment is a function $G:[0,1] \rightarrow[0,1]$. Some notes:

- The identity grading adjustment $I(r)$ is simply a decision not to adjust grades at all!
- The basic mapping assumes no extra credit on the original test, and no way to get an adjusted score above 100%.
- The basic mapping has no requirement that we make student grades better than their raw scores.

Basic Grading Adjustments

A few truly bad basic grading adjustments:

Basic Grading Adjustments

A few truly bad basic grading adjustments:

- $G(r)=0$

Basic Grading Adjustments

A few truly bad basic grading adjustments:

- $G(r)=0 \quad$ (I call this one the "Flood the Dean's Inbox" mapping)

Basic Grading Adjustments

A few truly bad basic grading adjustments:

- $G(r)=0 \quad$ (I call this one the "Flood the Dean's Inbox" mapping)
- $G(r)=1$

Basic Grading Adjustments

A few truly bad basic grading adjustments:

- $G(r)=0 \quad$ (I call this one the "Flood the Dean's Inbox" mapping)
- $G(r)=1$
(The "RateMyProfessors Gambit")

Basic Grading Adjustments

A few truly bad basic grading adjustments:

- $G(r)=0 \quad$ (I call this one the "Flood the Dean's Inbox" mapping)
- $G(r)=1$
(The "RateMyProfessors Gambit")
- $G(r)=1-r$

Basic Grading Adjustments

A few truly bad basic grading adjustments:

- $G(r)=0 \quad$ (I call this one the "Flood the Dean's Inbox" mapping)
- $G(r)=1$
(The "RateMyProfessors Gambit")
- $G(r)=1-r$
(The "Inversion Vortex")

A Responsible Definition

Def A responsible grading adjustment is a function
$G:[0, a] \rightarrow[0, \infty)$, for a real number a, with the following properties

A Responsible Definition

Def A responsible grading adjustment is a function
$G:[0, a] \rightarrow[0, \infty)$, for a real number a, with the following properties

1. $a \geq 1$

A Responsible Definition

Def A responsible grading adjustment is a function
$G:[0, a] \rightarrow[0, \infty)$, for a real number a, with the following properties

1. $a \geq 1$
2. $G(r) \geq r$, for every r in the domain

A Responsible Definition

Def A responsible grading adjustment is a function

$G:[0, a] \rightarrow[0, \infty)$, for a real number a, with the following properties

1. $a \geq 1$
2. $G(r) \geq r$, for every r in the domain
3. $G(r) \geq G(s)$ for every $r \geq s$ in the domain

A Responsible Definition

Def A responsible grading adjustment is a function

$G:[0, a] \rightarrow[0, \infty)$, for a real number a, with the following properties

1. $a \geq 1$
2. $G(r) \geq r$, for every r in the domain
3. $G(r) \geq G(s)$ for every $r \geq s$ in the domain

Geometrically: The graph of $N=G(r)$ is above the 45° line $N=r$, and nondecreasing.

A Responsible Definition

Def A responsible grading adjustment is a function
$G:[0, a] \rightarrow[0, \infty)$, for a real number a, with the following properties

1. $a \geq 1$
2. $G(r) \geq r$, for every r in the domain
3. $G(r) \geq G(s)$ for every $r \geq s$ in the domain

Geometrically: The graph of $N=G(r)$ is above the 45° line $N=r$, and nondecreasing.

Your Turn: Devise a verbal description, in terms of raw and adjusted scores, of each of the properties in the "responsible grading adjustment" function definition.

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective?

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Discuss: Is $G(r)=\cos \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment?

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Discuss: Is $G(r)=\cos \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Nope!

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Discuss: Is $G(r)=\cos \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Nope! E.g. $G(1)=0$, violating the second rule. (Third rule is also a problem, e.g. $G(0)>G(1)$.)

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Discuss: Is $G(r)=\cos \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Nope! E.g. $G(1)=0$, violating the second rule. (Third rule is also a problem, e.g. $G(0)>G(1)$.)

Discuss: Is $G(r)=0.5+0.5 \sin \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment?

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Discuss: Is $G(r)=\cos \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Nope! E.g. $G(1)=0$, violating the second rule. (Third rule is also a problem, e.g. $G(0)>G(1)$.)

Discuss: Is $G(r)=0.5+0.5 \sin \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Yep!

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Discuss: Is $G(r)=\cos \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Nope! E.g. $G(1)=0$, violating the second rule. (Third rule is also a problem, e.g. $G(0)>G(1)$.)

Discuss: Is $G(r)=0.5+0.5 \sin \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Yep! It's increasing and $G(r) \geq r$ on its domain.

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Discuss: Is $G(r)=\cos \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Nope! E.g. $G(1)=0$, violating the second rule. (Third rule is also a problem, e.g. $G(0)>G(1)$.)

Discuss: Is $G(r)=0.5+0.5 \sin \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Yep! It's increasing and $G(r) \geq r$ on its domain.

Discuss: What about $G(r)=0.5+0.5 \sin \left(\frac{\pi}{2} r\right)$ on $[0,1.1]$?

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Discuss: Is $G(r)=\cos \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Nope! E.g. $G(1)=0$, violating the second rule. (Third rule is also a problem, e.g. $G(0)>G(1)$.)

Discuss: Is $G(r)=0.5+0.5 \sin \left(\frac{\pi}{2} r\right)$ on [0,1] a responsible grading adjustment? Yep! It's increasing and $G(r) \geq r$ on its domain.

Discuss: What about $G(r)=0.5+0.5 \sin \left(\frac{\pi}{2} r\right)$ on $[0,1.1]$? Not anymore!

Some Discussion Items

Discuss: In principle, should a responsible grading adjustment function G be surjective? If G is a responsible grading adjustment, must it be injective?

Discuss: Is $G(r)=\cos \left(\frac{\pi}{2} r\right)$ on $[0,1]$ a responsible grading adjustment? Nope! E.g. $G(1)=0$, violating the second rule. (Third rule is also a problem, e.g. $G(0)>G(1)$.)

Discuss: Is $G(r)=0.5+0.5 \sin \left(\frac{\pi}{2} r\right)$ on [0,1] a responsible grading adjustment? Yep! It's increasing and $G(r) \geq r$ on its domain.

Discuss: What about $G(r)=0.5+0.5 \sin \left(\frac{\pi}{2} r\right)$ on $[0,1.1]$? Not anymore! $G(1.1) \approx 0.993<1.1$ violating rule $\# 2$ and $\# 3$, because it's decreasing on the interval $(1,1.1)$)

The Constant Shift

The most common grading adjustment is the constant shift, in which the adjusted grade, N, is simply the raw grade, r, plus a constant k.

The Constant Shift

The most common grading adjustment is the constant shift, in which the adjusted grade, N, is simply the raw grade, r, plus a constant k.

$$
N=C(r)=r+k \text { on }[0,1]
$$

The Constant Shift

The most common grading adjustment is the constant shift, in which the adjusted grade, N, is simply the raw grade, r, plus a constant k.

$$
N=C(r)=r+k \text { on }[0,1]
$$

The Constant Shift

The most common grading adjustment is the constant shift, in which the adjusted grade, N, is simply the raw grade, r, plus a constant k.

$$
N=C(r)=r+k \text { on }[0,1]
$$

Each score adjusted exactly the same;

The Constant Shift

The most common grading adjustment is the constant shift, in which the adjusted grade, N, is simply the raw grade, r, plus a constant k.

$$
N=C(r)=r+k \text { on }[0,1]
$$

Each score adjusted exactly the same; preserves the overall spread; creates scores above 100% (good/bad?).

The "Best Student" Scaling

The "best student" scaling is the constant shift, except the new 100% is based on the highest grade that any student earned, such that the highest grade is capped at 100%. Now the adjusted grade, N, is simply the raw grade, r, plus a constant that depends on the highest grade H.

The "Best Student" Scaling

The "best student" scaling is the constant shift, except the new 100% is based on the highest grade that any student earned, such that the highest grade is capped at 100%. Now the adjusted grade, N, is simply the raw grade, r, plus a constant that depends on the highest grade H.

$$
N=C(r)=r+(1-H) \text { on }[0, H]
$$

The "Best Student" Scaling

The "best student" scaling is the constant shift, except the new 100% is based on the highest grade that any student earned, such that the highest grade is capped at 100%. Now the adjusted grade, N, is simply the raw grade, r, plus a constant that depends on the highest grade H.

$$
N=C(r)=r+(1-H) \text { on }[0, H]
$$

The "Best Student" Scaling

The "best student" scaling is the constant shift, except the new 100% is based on the highest grade that any student earned, such that the highest grade is capped at 100%. Now the adjusted grade, N, is simply the raw grade, r, plus a constant that depends on the highest grade H.

$$
N=C(r)=r+(1-H) \text { on }[0, H]
$$

Preserves the overall spread; prevents scores above 100% (good/bad?)

The Linear Scaling

In a (non-constant) linear scaling, work that earned 100% in the raw grading would still earn 100%. However, "attempted" work that may have been awarded 0 points could earn a nonzero score instead.

The Linear Scaling

In a (non-constant) linear scaling, work that earned 100% in the raw grading would still earn 100%. However, "attempted" work that may have been awarded 0 points could earn a nonzero score instead.

If $0<r_{0}<1$ is the score that a grade of "attempted" now earns, whereas it originally would have been awarded a 0, then effectively work is scaled by

The Linear Scaling

In a (non-constant) linear scaling, work that earned 100% in the raw grading would still earn 100%. However, "attempted" work that may have been awarded 0 points could earn a nonzero score instead.

If $0<r_{0}<1$ is the score that a grade of "attempted" now earns, whereas it originally would have been awarded a 0, then effectively work is scaled by

$$
N=L(r)=\left(1-r_{0}\right) r+r_{0} \text { on }[0,1]
$$

The Linear Scaling

In the graph, a grade of "attempted" is given 25% credit $\left(r_{0}=0.25\right)$.

The Linear Scaling

In the graph, a grade of "attempted" is given 25% credit $\left(r_{0}=0.25\right)$.

The Linear Scaling

In the graph, a grade of "attempted" is given 25% credit $\left(r_{0}=0.25\right)$.

The effect of such a linear transformation is that scores are pushed more into the range of actual letter grades, without pushing anyone over 100%.

The Linear Scaling

In the graph, a grade of "attempted" is given 25% credit $\left(r_{0}=0.25\right)$.

The effect of such a linear transformation is that scores are pushed more into the range of actual letter grades, without pushing anyone over 100%.
Your Turn:

The Linear Scaling

In the graph, a grade of "attempted" is given 25% credit $\left(r_{0}=0.25\right)$.

The effect of such a linear transformation is that scores are pushed more into the range of actual letter grades, without pushing anyone over 100%.
Your Turn: Can you quickly convince yourself that condition \#3 of the responsible grading adjustment definition is met for $L(r)=\left(1-r_{0}\right) r+r_{0}$?

The Quadratic Scaling

With this quadratic scaling, scores are still bookended at 0 and 1 , but with a focus on giving a larger boost to students earning a 50%.

The Quadratic Scaling

With this quadratic scaling, scores are still bookended at 0 and 1 , but with a focus on giving a larger boost to students earning a 50\%.

$$
N=Q(r)=k r^{2}+(1-k) r \text { on }[0,1] \text {, with }-1 \leq k<0
$$

The Quadratic Scaling

With this quadratic scaling, scores are still bookended at 0 and 1 , but with a focus on giving a larger boost to students earning a 50\%.

$$
N=Q(r)=k r^{2}+(1-k) r \text { on }[0,1], \text { with }-1 \leq k<0
$$

Your Turn:

The Quadratic Scaling

With this quadratic scaling, scores are still bookended at 0 and 1 , but with a focus on giving a larger boost to students earning a 50\%.

$$
N=Q(r)=k r^{2}+(1-k) r \text { on }[0,1], \text { with }-1 \leq k<0
$$

Your Turn: Why do we need the given restriction on the value of k ?

The Power Scaling

Don't want to provide an advantage to students whose work was worth 0 points? Prefer to benefit the lower students, as opposed to the quadratic model (which prioritizes middling scores for a boost)?

The Power Scaling

Don't want to provide an advantage to students whose work was worth 0 points? Prefer to benefit the lower students, as opposed to the quadratic model (which prioritizes middling scores for a boost)?

Try power scaling!

The Power Scaling

Don't want to provide an advantage to students whose work was worth 0 points? Prefer to benefit the lower students, as opposed to the quadratic model (which prioritizes middling scores for a boost)?

Try power scaling!

The Power Scaling

Don't want to provide an advantage to students whose work was worth 0 points? Prefer to benefit the lower students, as opposed to the quadratic model (which prioritizes middling scores for a boost)?

Try power scaling!

Choose a value of $0<k<1$, then raw scores are scaled by

$$
N=P(r)=r^{k} \text { on }[0,1]
$$

The Power Scaling

With $k=1 / 2$ depicted below, the largest benefit ${ }^{1}$ is provided to students whose raw score was 25%.
${ }^{1}$ You can maximize $f(x)=x^{1 / 2}-x$ on $[0,1]$ for fun right now if you liket

The Power Scaling

With $k=1 / 2$ depicted below, the largest benefit ${ }^{1}$ is provided to students whose raw score was 25%.

${ }^{1}$ You can maximize $f(x)=x^{1 / 2}-x$ on $[0,1]$ for fun right now if you liket

The Power Scaling

With $k=1 / 2$ depicted below, the largest benefit ${ }^{1}$ is provided to students whose raw score was 25%.

Like the linear scaling, a power transformation pushes score more into the range of actual letter grades, without pushing anyone over 100%.
${ }^{1}$ You can maximize $f(x)=x^{1 / 2}-x$ on $[0,1]$ for fun right now if you liket

The Power Scaling

With $k=1 / 2$ depicted below, the largest benefit ${ }^{1}$ is provided to students

Like the linear scaling, a power transformation pushes score more into the range of actual letter grades, without pushing anyone over 100%.
Choosing a value of k closer to 1 implies a greater benefit to students with slightly higher raw scores, but with a limit.
${ }^{1}$ You can maximize $f(x)=x^{1 / 2}-x$ on $[0,1]$ for fun right now if you liket

The Power Scaling

Bonus question: Under the power scaling $G(r)=r^{k}$, what is the largest raw score that you can prioritize (i.e. provide greatest benefit in adjusted grade) using your choice of k ?

The Power Scaling

Bonus question: Under the power scaling $G(r)=r^{k}$, what is the largest raw score that you can prioritize (i.e. provide greatest benefit in adjusted grade) using your choice of k ? Could it be $1 / e$?!

The Power Scaling

Bonus question: Under the power scaling $G(r)=r^{k}$, what is the largest raw score that you can prioritize (i.e. provide greatest benefit in adjusted grade) using your choice of k ? Could it be $1 / e$?!

Your Turn:

The Power Scaling

Bonus question: Under the power scaling $G(r)=r^{k}$, what is the largest raw score that you can prioritize (i.e. provide greatest benefit in adjusted grade) using your choice of k ? Could it be $1 / e$?!

Your Turn: Come up with your own $N=G(r)$ responsible grading adjustment as a table and share with the group!

